Question #236792

Let A and B be n×n matrices such that det(A)0\textup{det}(A)\neq 0 and det(B)0\textup{det}(B)\neq 0. Consider the following statements. Based on the properties of determinants which of the following is false? 


  1. det(AB)=det(BA)\textup{det}(AB)=\textup{det}(BA)
  2. If A=Bthendet(A)=(1)ndet(B)A=−B then \textup{det}(A)=(-1)^{n}\textup{det}(B)
  3. det(ATBT)=det(AB)\textup{det}(A^{T}B^{T})=\textup{det}(AB)
  4. det((AB)1)=1det(A)det(B)\textup{det}((AB)^{-1})=\frac{1}{\textup{det}(A)\textup{det}(B)}
  5. det(AB)=det(A)+det(B)\textup{det}(AB)=\textup{det}(A)+\textup{det}(B)
1
Expert's answer
2021-09-14T06:09:51-0400

Option 5 is false becuase det(AB)=det(A).det(B)det(AB)=det(A).det(B)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS