Question #236800

Consider the system of equations 

 

+x+z=2+x+y=0+y+z=2.\begin{array}{ccc} +x&&+z&=2\\ +x&+y& &=0\\ & +y&+z&=2\end{array}.

​.

Which of the following statement(s) is/are true?


  1. y=det[201010211]det[101110101]y= \frac{\textup{det} \begin{bmatrix}2&0&1\\0&1&0\\2&1&1\end{bmatrix}}{\textup{det} \begin{bmatrix}1&0&1\\1&1&0\\1&0&1\end{bmatrix}}
  2. x=det[201010211]det[101110101]x=\frac{\textup{det} \begin{bmatrix}2&0&1\\0&1&0\\2&1&1\end{bmatrix}}{\textup{det} \begin{bmatrix}1&0&1\\1&1&0\\1&0&1\end{bmatrix}}
  3. z=det[0212]+det[1202]2z=\frac{\begin{array}{cccc}&-\textup{det} \begin{bmatrix}0&2\\1&2\end{bmatrix} &+ \textup{det} \begin{bmatrix}1&2\\0&2\end{bmatrix}\end{array}}{2}
  4. z=det[0212]+det[1202]2z=\frac{\begin{array}{cccccc}&\textup{det} \begin{bmatrix}0&2\\1&2\end{bmatrix} &+ \textup{det} \begin{bmatrix}1&2\\0&2\end{bmatrix}\end{array}}{2}
  5. y=det[121100021]2y=\frac{\textup{det} \begin{bmatrix}1&2&1\\1&0&0\\0&2&1\end{bmatrix}}{2}


 


1
Expert's answer
2021-09-14T06:04:42-0400

The answer to your question is provided in the image:

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS