If z = 2 ( cos 2¥/3 + isin 2¥/3 ), then z^3=
i. 2 - i8√3
ii. -4 + i4√3
iii.-8-i√2
iv. -8 - i4
If Z=2(cos(2¥3)+isin(2¥3))Z=2(cos(\frac{2¥}{3})+isin(\frac{2¥}{3}))Z=2(cos(32¥)+isin(32¥))
we know de moivre's formula
:-
Zn=r(rerθ)n=rn(cosnθ+isinnθ)orZn=rn[cos(n¥)+isin(n¥)]so, Z3=23(cos(2¥3)3+isin(2¥3.3))=8(cos(2¥)+isin(2¥))=8(−12+i.32)Z^n=r(re^{r\theta})^n=r^n(cosn\theta+isinn\theta)\\orZ^n=r^n[cos(n¥)+isin(n¥)]\\so,\space Z^3=2^3(cos(\frac{2¥}{3})3+isin(\frac{2¥}{3}.3))\\=8(cos(2¥)+isin(2¥))\\=8(\frac{-1}{2}+i.\frac{\sqrt3}{2})Zn=r(rerθ)n=rn(cosnθ+isinnθ)orZn=rn[cos(n¥)+isin(n¥)]so, Z3=23(cos(32¥)3+isin(32¥.3))=8(cos(2¥)+isin(2¥))=8(2−1+i.23)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments