Question #228876

If z = 2 ( cos 2¥/3 + isin 2¥/3 ), then z^3=


i. 2 - i8√3

ii. -4 + i4√3

iii.-8-i√2

iv. -8 - i4


1
Expert's answer
2021-08-24T08:38:21-0400

If Z=2(cos(2¥3)+isin(2¥3))Z=2(cos(\frac{2¥}{3})+isin(\frac{2¥}{3}))

we know de moivre's formula

:-

Zn=r(rerθ)n=rn(cosnθ+isinnθ)orZn=rn[cos(n¥)+isin(n¥)]so, Z3=23(cos(2¥3)3+isin(2¥3.3))=8(cos(2¥)+isin(2¥))=8(12+i.32)Z^n=r(re^{r\theta})^n=r^n(cosn\theta+isinn\theta)\\orZ^n=r^n[cos(n¥)+isin(n¥)]\\so,\space Z^3=2^3(cos(\frac{2¥}{3})3+isin(\frac{2¥}{3}.3))\\=8(cos(2¥)+isin(2¥))\\=8(\frac{-1}{2}+i.\frac{\sqrt3}{2})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS