If z = 2 ( cos 2Â¥/3 + isin 2Â¥/3 ), then z^3=
i. 2 - i8√3
ii. -4 + i4√3
iii.-8-i√2
iv. -8 - i4
If "Z=2(cos(\\frac{2\u00a5}{3})+isin(\\frac{2\u00a5}{3}))"
we know de moivre's formula
:-
"Z^n=r(re^{r\\theta})^n=r^n(cosn\\theta+isinn\\theta)\\\\orZ^n=r^n[cos(n\u00a5)+isin(n\u00a5)]\\\\so,\\space Z^3=2^3(cos(\\frac{2\u00a5}{3})3+isin(\\frac{2\u00a5}{3}.3))\\\\=8(cos(2\u00a5)+isin(2\u00a5))\\\\=8(\\frac{-1}{2}+i.\\frac{\\sqrt3}{2})"
Comments
Leave a comment