Area of Square =s×s=s2
Area of Circle =πr2
Perimeter of Square = 4×s
Perimeter of Circle = 2πr
Perimeter of Square = Perimeter of Circle
= 4s=2πr
=s=0.5πr
=r=π2s
Area of Square =(0.5×π×r)2=(0.5πr)2
Area of circle =π×(π2s)2 =π4(s)2
Substituting =s=0.5πr in =π4(s)2
=π4(0.5πr)2
=πr2
The ratio of the area of a square to the area of a circle is: =(0.5πr)2:πr2
=0.25π2r2:πr2
=0.25π:1
5, All squares are rhombuses, but not all rhombuses are squares.
Therefore, the area of the given rhombus is l×l since they have the same area as that of the square.
6,
arctan(3)+πn≤3x+1<2π+πn
arctan(3)+πn≤3x+1and3x+1<2π+πn
x≥π+3πn−1andx<23π−2+3πn
Answer is: π−1+3πn≤x<23π−2+3πn
7) Area of the triangle: =(s(s−a)(s−b)(s−c)
=s=2p=27+8+3=9
=(9(9−7)(9−8)(9−3)
=108=10.39
50% of the area of the triangle is: 0.5×10.39=4.156
8) The correct answer is: option B :=(−1+221)
Explanation:
=3−22
=2−1
Comments