Area of Square = s × s = s 2 = s \times s = s\\^2 = s × s = s 2
Area of Circle = π r 2 = \pi r\\^2 = π r 2
Perimeter of Square = 4 × s 4\times s 4 × s
Perimeter of Circle = 2 π r 2\pi r\\ 2 π r
Perimeter of Square = Perimeter of Circle
= 4 s = 2 π r 4s = 2 \pi r 4 s = 2 π r
= s = 0.5 π r = s =0.5 \pi r = s = 0.5 π r
= r = 2 s π = r = \frac{2s}{\pi} = r = π 2 s
Area of Square = ( 0.5 × π × r ) 2 = ( 0.5 π r ) 2 = (0.5 \times \pi \times r) \\ ^2 = (0.5 \pi r) \\^2 = ( 0.5 × π × r ) 2 = ( 0.5 π r ) 2
Area of circle = π × ( 2 s π ) 2 = \pi \times (\frac{2s}{\pi})\\^2 = π × ( π 2 s ) 2 = 4 ( s ) 2 π = \frac{4 (s) \\^2}{\pi} = π 4 ( s ) 2
Substituting = s = 0.5 π r = s =0.5 \pi r = s = 0.5 π r in = 4 ( s ) 2 π = \frac{4 (s) \\^2}{\pi} = π 4 ( s ) 2
= 4 ( 0.5 π r ) 2 π = \frac{4 (0.5 \pi r) \\^2}{\pi} = π 4 ( 0.5 π r ) 2
= π r 2 = \pi r\\^2 = π r 2
The ratio of the area of a square to the area of a circle is: = ( 0.5 π r ) 2 : π r 2 = (0.5 \pi r) \\^2 : \pi r\\^2 = ( 0.5 π r ) 2 : π r 2
= 0.25 π 2 r 2 : π r 2 = 0.25 \pi\\^2 r\\^2 : \pi r\\ ^2 = 0.25 π 2 r 2 : π r 2
= 0.25 π : 1 =0.25 \pi : 1 = 0.25 π : 1
5, All squares are rhombuses, but not all rhombuses are squares.
Therefore, the area of the given rhombus is l × l l \times l l × l since they have the same area as that of the square.
6,
arctan ( 3 ) + π n ≤ x + 1 3 < π 2 + π n \arctan \left(\sqrt{3}\right)+\pi n\le \frac{x+1}{3}<\frac{\pi }{2}+\pi n arctan ( 3 ) + πn ≤ 3 x + 1 < 2 π + πn
arctan ( 3 ) + π n ≤ x + 1 3 a n d x + 1 3 < π 2 + π n \arctan \left(\sqrt{3}\right)+\pi n\le \frac{x+1}{3}\quad \mathrm{and}\quad \frac{x+1}{3}<\frac{\pi }{2}+\pi n arctan ( 3 ) + πn ≤ 3 x + 1 and 3 x + 1 < 2 π + πn
x ≥ π + 3 π n − 1 a n d x < 3 π − 2 2 + 3 π n x\ge \:\pi +3\pi n-1\quad \mathrm{and}\quad \:x<\frac{3\pi -2}{2}+3\pi n x ≥ π + 3 πn − 1 and x < 2 3 π − 2 + 3 πn
Answer is: π − 1 + 3 π n ≤ x < 3 π − 2 2 + 3 π n \pi -1+3\pi n\le \:x<\frac{3\pi -2}{2}+3\pi n π − 1 + 3 πn ≤ x < 2 3 π − 2 + 3 πn
7) Area of the triangle: = ( s ( s − a ) ( s − b ) ( s − c ) =\sqrt{(s(s-a) (s-b) (s-c)} = ( s ( s − a ) ( s − b ) ( s − c )
= s = p 2 = 7 + 8 + 3 2 = 9 = s = \frac{p}{2} = \frac{7 + 8 +3}{2} = 9 = s = 2 p = 2 7 + 8 + 3 = 9
= ( 9 ( 9 − 7 ) ( 9 − 8 ) ( 9 − 3 ) =\sqrt{(9(9-7) (9-8) (9-3)} = ( 9 ( 9 − 7 ) ( 9 − 8 ) ( 9 − 3 )
= 108 = 10.39 = \sqrt{108} = 10.39 = 108 = 10.39
50% of the area of the triangle is: 0.5 × 10.39 = 4.156 0.5 \times 10.39 = 4.156 0.5 × 10.39 = 4.156
8) The correct answer is: option B := ( − 1 + 2 1 2 ) = (-1 + 2\\ ^\frac{1}{2}) = ( − 1 + 2 2 1 )
Explanation:
= 3 − 2 2 =\sqrt{3-2\sqrt{2}} = 3 − 2 2
= 2 − 1 =\sqrt{2}-1 = 2 − 1
Comments