Answer to Question #228837 in Algebra for Benjamin

Question #228837

Simplify (√5+1)÷(√5-1)


1
Expert's answer
2021-08-25T07:48:06-0400

Answer:


To solve this problem we should multiply both numerator and denominator by  (5+1)(5+1)\frac{(\sqrt{\smash[b]{5}}+1)}{(\sqrt{\smash[b]{5}}+1)} =1 (because multiplying any number by 1 doesn't change it) by itself to get a 'normal' number on the bottom. So in this case we do:


(5+1)(51)(5+1)(5+1)=(55+5+5+1)(55+551)=(5+25+1)(51)\frac{(\sqrt{\smash[b]{5}}+1)}{(\sqrt{\smash[b]{5}}-1)}*\frac{(\sqrt{\smash[b]{5}}+1)}{(\sqrt{\smash[b]{5}}+1)}=\frac{(\sqrt{\smash[b]{5}}*\sqrt{\smash[b]{5}}+\sqrt{\smash[b]{5}}+\sqrt{\smash[b]{5}}+1)}{(\sqrt{\smash[b]{5}}*\sqrt{\smash[b]{5}}+\sqrt{\smash[b]{5}}-\sqrt{\smash[b]{5}}-1)}=\frac{(5+2\sqrt{\smash[b]{5}}+1)}{(5-1)}


    (5+25+1)(51)=(6+25)(4)=2(3+5)4=3+52\implies \frac{(5+2\sqrt{\smash[b]{5}}+1)}{(5-1)}=\frac{(6+2\sqrt{\smash[b]{5}})}{(4)}=\frac{2(3+\sqrt{\smash[b]{5}})}{4}=\frac{3+\sqrt{\smash[b]{5}}}{2}


Answer:

3+52\frac{3+\sqrt{\smash[b]{5}}}{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment