Question #228679

the locus of the complex number z such that Iz+3I = Iz-1I is?

A.     A line

B.     A circle

C.     A quadratic curve

An ellipse 


1
Expert's answer
2021-09-14T06:05:07-0400

Given that z+3=z1|z+3|=|z-1|

Let z=x+iyz=x+iy

x+iy+3=x+iy1(x+3)2+y2=(x1)2+y2|x+iy+3|=|x+iy-1|\\ \Rightarrow \sqrt{(x+3)^2+y^2}=\sqrt{(x-1)^2+y^2}\\

Squaring both sides, we get:

(x+3)2+y2=(x1)2+y2x2+9+6x=x2+12x8x+8=0x=1(x+3)^2+y^2=(x-1)^2+y^2\\ \Rightarrow x^2+9+6x=x^2+1-2x\\ \Rightarrow 8x+8=0\\ \Rightarrow x=-1

Therefore, the locus of a given complex number is a line.

Hence, the correct option is (A).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS