the locus of the complex number z such that Iz+3I = Iz-1I is?
A. A line
B. A circle
C. A quadratic curve
An ellipse
Given that ∣z+3∣=∣z−1∣|z+3|=|z-1|∣z+3∣=∣z−1∣
Let z=x+iyz=x+iyz=x+iy
∣x+iy+3∣=∣x+iy−1∣⇒(x+3)2+y2=(x−1)2+y2|x+iy+3|=|x+iy-1|\\ \Rightarrow \sqrt{(x+3)^2+y^2}=\sqrt{(x-1)^2+y^2}\\∣x+iy+3∣=∣x+iy−1∣⇒(x+3)2+y2=(x−1)2+y2
Squaring both sides, we get:
(x+3)2+y2=(x−1)2+y2⇒x2+9+6x=x2+1−2x⇒8x+8=0⇒x=−1(x+3)^2+y^2=(x-1)^2+y^2\\ \Rightarrow x^2+9+6x=x^2+1-2x\\ \Rightarrow 8x+8=0\\ \Rightarrow x=-1(x+3)2+y2=(x−1)2+y2⇒x2+9+6x=x2+1−2x⇒8x+8=0⇒x=−1
Therefore, the locus of a given complex number is a line.
Hence, the correct option is (A).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments