The formula for modulus (r) and principal argument ("\\theta") of a complex number (z = x + iy) is :
r = "\\mid"z"\\mid" = "\\sqrt{\\smash[b]{x\u00b2 + y\u00b2}}"
"\\theta" = arctan(y/x)
(a) z = 3 - 4i
Modulus, r = "\\sqrt{\\smash[b]{3\u00b2 + (-4)\u00b2}}"
r = "\\sqrt{\\smash[b]{9 + 16}}" = "\\sqrt{\\smash[b]{25}}"
"\\therefore" r = 5
Principal argument, "\\theta" = arctan(-4/3)
"\\therefore" "\\theta" = -53.13"\\degree"
(b) z = -2 + i
Modulus, r = "\\sqrt{\\smash[b]{(-2)\u00b2 + (1)\u00b2}}"
r = "\\sqrt{\\smash[b]{4 + 1}}"
"\\therefore" r = "\\sqrt{\\smash[b]{5}}"
Using arctan(1/(-2))"= -26.56\\degree"
Since the given complex number lies in the second quadrant,
Therefore, the principal argument is "\\theta = (- 26.56 + 180)\\degree"
"\\therefore \\theta = 153.44\\degree"
(c) z = 1/(1 + i"\\sqrt{\\smash[b]{3}}" )
"z = (1 - i\\sqrt{\\smash[b]{3}})\/((1 + i\\sqrt{\\smash[b]{3}})(1 - i\\sqrt{\\smash[b]{3}}))"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/(1\u00b2 - (i\\sqrt{\\smash[b]{3}})\u00b2)"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/(1 + 9)"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/10"
"z = (1\/10) - i(\\sqrt{\\smash[b]{3}}\/10)"
Modulus, r = "\\sqrt{\\smash[b]{(1\/10)\u00b2 + (\\sqrt{\\smash[b]{3}}\/10)\u00b2}}"
r = "\\sqrt{\\smash[b]{(1\/100) + (3\/100)}}"
r = "\\sqrt{\\smash[b]{(4\/100)}}"
"\\therefore" r = (2/10)
Principal argument, θ = arctan"( -(\\sqrt{\\smash[b]{3}}\/10)\/(1\/10)"
"\\theta = arctan(- \\sqrt{\\smash[b]{3}})"
"\\theta = - ( \\pi \/ 3)"
"\\therefore" "\\theta = - 60\\degree"
(d) z = (7 − i)/(-4 - 3i)
z = ((7 - i)(-4 + 3i))/((-4 - 3i)(-4 + 3i))
z = (-28 + 21i +4i + 3)/((-4)² - (3i)²)
z = (-25 + 25i)/(16 + 9)
z = (-25 + 25i)/25
z = -1 + i
Modulus, r = "\\sqrt{\\smash[b]{(-1)\u00b2 + 1\u00b2}}"
r = "\\sqrt{\\smash[b]{1 + 1}}"
"\\therefore r= \\sqrt{\\smash[b]{2}}"
Using arctan(1/(-1)) = arctan(-1)= -45"\\degree" .
Since the given complex number lies in the second quadrant,
Therefore, the principal argument is "\\theta = (-45 + 180)\u00b0"
"\\therefore\\theta= 135\u00b0"
(e) z = "5(cos(\\pi\/3) +isin(\\pi\/3))"
z= "5cos(\\pi\/3) +i5sin(\\pi\/3)"
Modulus, r = "\\sqrt{\\smash[b]{(5cos(\u03c0\/3))\u00b2 + (5sin(\u03c0\/3))\u00b2}}"
"r = \\sqrt{\\smash[b]{5\u00b2(cos\u00b2(\u03c0\/3) + sin\u00b2(\u03c0\/3))}}"
"r = 5 \\sqrt{\\smash[b]{1}}"
"\\therefore" r = 5
Principal argument, θ = arctan(5sin(π/3)/5cos(π/3))
θ = arctan(tan(π/3))
θ = "\\pi\/3"
"\\therefore\\theta" = 60"\\degree"
(f) z = cos 2π/3 − sin 2π/3
z = (-1/2) - ("\\sqrt{\\smash[b]{3}}\/2" )
"z = - (1 + \\sqrt{\\smash[b]{3}})\/2"
Modulus, r = "|-(1+\\sqrt{3})\/2|=(1+\\sqrt{3})\/2"
"\\therefore" "r =(1+\\sqrt{3})\/2"
Since the given complex number is negative real number,
Therefore, the principal argument is "\\theta=180\u00b0"
"\\therefore\\theta= 180\u00b0"
Comments
Leave a comment