1.
a. ( c o s ( − 30 ° ) + i . s i n ( − 30 ° ) ) − 4 (cos(-30\degree) + i.sin(-30\degree))^{-4} ( cos ( − 30° ) + i . s in ( − 30° ) ) − 4
De Moivre’s theorem states that
( c o s x + i . s i n x ) n = c o s ( n x ) + i . s i n ( n x ) (cosx+i.sinx)^n=cos (nx)+i.sin(nx) ( cos x + i . s in x ) n = cos ( n x ) + i . s in ( n x )
Substitute for x = − 30 ° x=-30\degree x = − 30° and n = − 4 n=-4 n = − 4
( c o s ( − 30 ° ) + i . s i n ( − 30 ° ) ) − 4 = c o s ( − 4 ∗ ( − 30 ° ) ) + i . s i n ( − 4 ∗ ( − 30 ° ) ) (cos(-30\degree) + i.sin(-30\degree))^{-4}=cos(-4*(-30\degree))+i.sin(-4*(-30\degree)) ( cos ( − 30° ) + i . s in ( − 30° ) ) − 4 = cos ( − 4 ∗ ( − 30° )) + i . s in ( − 4 ∗ ( − 30° ))
= c o s 120 ° + i . s i n 120 ° =cos120\degree+i.sin120\degree = cos 120° + i . s in 120°
= − 1 / 2 + ( i 3 ) / 2 =-1/2 +(i\sqrt{\smash[b]{3}})/2 = − 1/2 + ( i 3 ) /2
Answer: = ( − 1 + i 3 ) / 2 =(-1 +i\sqrt{\smash[b]{3}})/2 = ( − 1 + i 3 ) /2
b. ( c o s 20 ° + i . s i n 20 ° ) − 3 (cos 20\degree+i.sin20\degree)^{-3} ( cos 20° + i . s in 20° ) − 3
De Moivre’s theorem states that
( c o s x + i . s i n x ) n = c o s ( n x ) + i . s i n ( n x ) (cosx+i.sinx)^n=cos (nx)+i.sin(nx) ( cos x + i . s in x ) n = cos ( n x ) + i . s in ( n x )
Substitute for x = 20 ° x=20\degree x = 20° and n = − 3 n=-3 n = − 3
( c o s 20 ° + i . s i n 20 ° ) − 3 = c o s ( − 3 ∗ 20 ° ) + i . s i n ( − 3 ∗ 20 ° ) (cos 20\degree+i.sin20\degree)^{-3}=cos(-3*20\degree)+i.sin(-3*20\degree) ( cos 20° + i . s in 20° ) − 3 = cos ( − 3 ∗ 20° ) + i . s in ( − 3 ∗ 20° )
= c o s ( − 60 ° ) + i . s i n ( − 60 ° ) =cos(-60\degree)+i.sin(-60\degree) = cos ( − 60° ) + i . s in ( − 60° )
= 1 / 2 − ( i 3 ) / 2 =1/2 -(i\sqrt{\smash[b]{3}})/2 = 1/2 − ( i 3 ) /2
Answer: = ( 1 − i . 3 ) / 2 =(1 -i.\sqrt{3})/2 = ( 1 − i . 3 ) /2
c. ( c o s ( − 30 ° ) + i . s i n ( − 30 ° ) ) − 4 (cos(-30\degree) + i.sin(-30\degree))^{-4} ( cos ( − 30° ) + i . s in ( − 30° ) ) − 4
De Moivre’s theorem states that
( c o s x + i . s i n x ) n = c o s ( n x ) + i . s i n ( n x ) (cosx+i.sinx)^n=cos (nx)+i.sin(nx) ( cos x + i . s in x ) n = cos ( n x ) + i . s in ( n x )
Substitute for x = − 30 ° x=-30\degree x = − 30° and n = − 4 n=-4 n = − 4
( c o s ( − 30 ° ) + i . s i n ( − 30 ° ) ) − 4 = c o s ( − 4 ∗ ( − 30 ° ) ) + i . s i n ( − 4 ∗ ( − 30 ° ) ) (cos(-30\degree) + i.sin(-30\degree))^{-4}=cos(-4*(-30\degree))+i.sin(-4*(-30\degree)) ( cos ( − 30° ) + i . s in ( − 30° ) ) − 4 = cos ( − 4 ∗ ( − 30° )) + i . s in ( − 4 ∗ ( − 30° ))
= c o s 120 ° + i . s i n 120 ° =cos120\degree+i.sin120\degree = cos 120° + i . s in 120°
= − 1 / 2 + ( i 3 ) / 2 =-1/2 +(i\sqrt{\smash[b]{3}})/2 = − 1/2 + ( i 3 ) /2
Answer: = ( − 1 + i 3 ) / 2 =(-1 +i\sqrt{\smash[b]{3}})/2 = ( − 1 + i 3 ) /2
Comments