1.
a. "(cos(-30\\degree) + i.sin(-30\\degree))^{-4}"
De Moivre’s theorem states that
"(cosx+i.sinx)^n=cos (nx)+i.sin(nx)"
Substitute for "x=-30\\degree" and "n=-4"
"(cos(-30\\degree) + i.sin(-30\\degree))^{-4}=cos(-4*(-30\\degree))+i.sin(-4*(-30\\degree))"
"=cos120\\degree+i.sin120\\degree"
"=-1\/2 +(i\\sqrt{\\smash[b]{3}})\/2"
Answer: "=(-1 +i\\sqrt{\\smash[b]{3}})\/2"
b. "(cos 20\\degree+i.sin20\\degree)^{-3}"
De Moivre’s theorem states that
"(cosx+i.sinx)^n=cos (nx)+i.sin(nx)"
Substitute for "x=20\\degree" and "n=-3"
"(cos 20\\degree+i.sin20\\degree)^{-3}=cos(-3*20\\degree)+i.sin(-3*20\\degree)"
"=cos(-60\\degree)+i.sin(-60\\degree)"
"=1\/2 -(i\\sqrt{\\smash[b]{3}})\/2"
Answer: "=(1 -i.\\sqrt{3})\/2"
c. "(cos(-30\\degree) + i.sin(-30\\degree))^{-4}"
De Moivre’s theorem states that
"(cosx+i.sinx)^n=cos (nx)+i.sin(nx)"
Substitute for "x=-30\\degree" and "n=-4"
"(cos(-30\\degree) + i.sin(-30\\degree))^{-4}=cos(-4*(-30\\degree))+i.sin(-4*(-30\\degree))"
"=cos120\\degree+i.sin120\\degree"
"=-1\/2 +(i\\sqrt{\\smash[b]{3}})\/2"
Answer: "=(-1 +i\\sqrt{\\smash[b]{3}})\/2"
Comments
Leave a comment