1.
a. (cos(−30°)+i.sin(−30°))−4
De Moivre’s theorem states that
(cosx+i.sinx)n=cos(nx)+i.sin(nx)
Substitute for x=−30° and n=−4
(cos(−30°)+i.sin(−30°))−4=cos(−4∗(−30°))+i.sin(−4∗(−30°))
=cos120°+i.sin120°
=−1/2+(i3)/2
Answer: =(−1+i3)/2
b. (cos20°+i.sin20°)−3
De Moivre’s theorem states that
(cosx+i.sinx)n=cos(nx)+i.sin(nx)
Substitute for x=20° and n=−3
(cos20°+i.sin20°)−3=cos(−3∗20°)+i.sin(−3∗20°)
=cos(−60°)+i.sin(−60°)
=1/2−(i3)/2
Answer: =(1−i.3)/2
c. (cos(−30°)+i.sin(−30°))−4
De Moivre’s theorem states that
(cosx+i.sinx)n=cos(nx)+i.sin(nx)
Substitute for x=−30° and n=−4
(cos(−30°)+i.sin(−30°))−4=cos(−4∗(−30°))+i.sin(−4∗(−30°))
=cos120°+i.sin120°
=−1/2+(i3)/2
Answer: =(−1+i3)/2
Comments