Question #117712
12. Use De Moivre's theorem to simplify the following
a. ( cos(-30)+isin(-30))-⁴
b. (Cos20+isin20)-³
c.(cos(-30)+isin(-30))-⁴
1
Expert's answer
2020-05-26T19:40:06-0400

1.    

a.  (cos(30°)+i.sin(30°))4(cos(-30\degree) + i.sin(-30\degree))^{-4}   

De Moivre’s theorem states that

(cosx+i.sinx)n=cos(nx)+i.sin(nx)(cosx+i.sinx)^n=cos (nx)+i.sin(nx)

Substitute for x=30°x=-30\degree  and n=4n=-4

(cos(30°)+i.sin(30°))4=cos(4(30°))+i.sin(4(30°))(cos(-30\degree) + i.sin(-30\degree))^{-4}=cos(-4*(-30\degree))+i.sin(-4*(-30\degree))

=cos120°+i.sin120°=cos120\degree+i.sin120\degree

=1/2+(i3)/2=-1/2 +(i\sqrt{\smash[b]{3}})/2

Answer: =(1+i3)/2=(-1 +i\sqrt{\smash[b]{3}})/2


b.    (cos20°+i.sin20°)3(cos 20\degree+i.sin20\degree)^{-3}

De Moivre’s theorem states that

(cosx+i.sinx)n=cos(nx)+i.sin(nx)(cosx+i.sinx)^n=cos (nx)+i.sin(nx)

Substitute for  x=20°x=20\degree and n=3n=-3

(cos20°+i.sin20°)3=cos(320°)+i.sin(320°)(cos 20\degree+i.sin20\degree)^{-3}=cos(-3*20\degree)+i.sin(-3*20\degree)

=cos(60°)+i.sin(60°)=cos(-60\degree)+i.sin(-60\degree)

=1/2(i3)/2=1/2 -(i\sqrt{\smash[b]{3}})/2

Answer: =(1i.3)/2=(1 -i.\sqrt{3})/2


c.  (cos(30°)+i.sin(30°))4(cos(-30\degree) + i.sin(-30\degree))^{-4}

De Moivre’s theorem states that

(cosx+i.sinx)n=cos(nx)+i.sin(nx)(cosx+i.sinx)^n=cos (nx)+i.sin(nx)

Substitute for x=30°x=-30\degree and n=4n=-4

(cos(30°)+i.sin(30°))4=cos(4(30°))+i.sin(4(30°))(cos(-30\degree) + i.sin(-30\degree))^{-4}=cos(-4*(-30\degree))+i.sin(-4*(-30\degree))

=cos120°+i.sin120°=cos120\degree+i.sin120\degree

=1/2+(i3)/2=-1/2 +(i\sqrt{\smash[b]{3}})/2

Answer: =(1+i3)/2=(-1 +i\sqrt{\smash[b]{3}})/2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS