Question #117711
13. Express -1+I in polar form. Hence show that(-1+i)¹⁶ is real and that 1/(-+i)⁶ is purely imaginary, giving the value for each
1
Expert's answer
2020-06-01T14:58:33-0400

a = r cos θ

b = r sin θ

a+bi= r (cos θ+i sin θ)

here a=-1 and b=1

here r=a2+b2=2\sqrt{a^2+b^2}=\sqrt2

θ=tan(b/a)=tan(1)=3π/4\tan^-(b/a)=\tan^-(-1)=3\pi/4

so in polar form it becomes 2(cos3π4+isin3π4)\sqrt2(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4})


((1+i)2)8=(112i)8=(2)8.(i)8=28.1=28((-1+i)^2)^8=(1-1-2i)^8=(-2)^8.(i)^8=2^8.1=2^8

Hence it is purely real



Let's calculate the value of 1(1+i)6\frac{1}{(-1+i)^6}

1(1+i22i)3=1(2i)3=18i=i8\frac{1}{(1+i^2-2i)^3}=\frac{1}{(-2i)^3}=\frac{1}{8i}=-\frac{i}{8}

which is purely imaginary


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS