a = r cos θ
b = r sin θ
a+bi= r (cos θ+i sin θ)
here a=-1 and b=1
here r=a2+b2=2
θ=tan−(b/a)=tan−(−1)=3π/4
so in polar form it becomes 2(cos43π+isin43π)
((−1+i)2)8=(1−1−2i)8=(−2)8.(i)8=28.1=28
Hence it is purely real
Let's calculate the value of (−1+i)61
(1+i2−2i)31=(−2i)31=8i1=−8i
which is purely imaginary
Comments