a = r cos θ
b = r sin θ
a+bi= r (cos θ+i sin θ)
here a=-1 and b=1
here r="\\sqrt{a^2+b^2}=\\sqrt2"
θ="\\tan^-(b\/a)=\\tan^-(-1)=3\\pi\/4"
so in polar form it becomes "\\sqrt2(\\cos\\frac{3\\pi}{4}+i\\sin\\frac{3\\pi}{4})"
"((-1+i)^2)^8=(1-1-2i)^8=(-2)^8.(i)^8=2^8.1=2^8"
Hence it is purely real
Let's calculate the value of "\\frac{1}{(-1+i)^6}"
"\\frac{1}{(1+i^2-2i)^3}=\\frac{1}{(-2i)^3}=\\frac{1}{8i}=-\\frac{i}{8}"
which is purely imaginary
Comments
Leave a comment