Question #117371
Express −1 + i in polar form. Hence show that (−1 + i )^16 is real and that 1/(−1 + i )^6
is purely imaginary, giving the value for each.
1
Expert's answer
2020-05-25T19:09:33-0400

let z=1+i , x=1 and y=1we get r=x2+y2=1+1=2 and θ=arctanyx=arctan11=3π4Since, in the polar form, we have z=r(cosθ+isinθ) .So, we get z=2(cos3π4+isin3π4).and z16=(2)16(cos3π4+isin3π4)16 .From De Moivre’s Theorem, we have(cosθ+isinθ)n=cosnθ+isinnθSo, we get z16=(2)16(cos12π+isin12π)       =(2)16(cos0+isin0)=256 .Also, we get 1z6=z6=(2)6(cos3π4+isin3π4)6 . z6=(2)6(cos9π2+isin9π2)        =(2)6(cosπ2+isinπ2)=18i .So, we can conclude that1. (1+i)16 is real and equal 256 .2. (1+i)6 is purely imaginary and equal 18i let \ z=-1+i\ , \ x=-1\ and \ y=1\\ \text{we get}\\ \ r= \sqrt{x^2+y^2}=\sqrt{1+1}=\sqrt{2} \ and\\ \ \theta=\arctan \frac{y}{x}=\arctan \frac{1}{-1}=\frac{3 \pi}{4}\\ \text{Since, in the polar form, we have}\\ \ z=r(\cos \theta+i \sin \theta)\ .\\ \text{So, we get}\\ \ z=\sqrt{2}(\cos \frac{3 \pi}{4}+i \sin\frac{3 \pi}{4}).\\ \text{and}\\ \ z^{16}=(\sqrt{2})^{16}(\cos \frac{3 \pi}{4}+i \sin\frac{3 \pi}{4})^{16}\ .\\ \text{From De Moivre's Theorem, we have}\\ (\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta\\ \text{So, we get}\\ \ z^{16}=(\sqrt{2})^{16}(\cos 12 \pi+i \sin 12 \pi)\\ \ \ \ \ \ \ \ =(\sqrt{2})^{16}(\cos 0+i \sin 0)=256\ .\\ \text{Also, we get}\\ \ \frac{1}{z^{6}}=z^{-6}=(\sqrt{2})^{-6}(\cos \frac{3 \pi}{4}+i \sin\frac{3 \pi}{4})^{-6}\ .\\ \ z^{-6}=(\sqrt{2})^{-6}(\cos \frac{-9 \pi}{2}+i \sin \frac{-9 \pi}{2})\\ \ \ \ \ \ \ \ \ =(\sqrt{2})^{-6}(\cos \frac{- \pi}{2}+i \sin \frac{- \pi}{2})=-\frac{1}{8}i\ .\\ \text{So, we can conclude that}\\ 1. \ (-1+i)^{16}\text{ is real and equal} \ 256\ .\\ 2.\ (-1+i)^{-6} \text{ is purely imaginary and equal} \ -\frac{1}{8}i\ \\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS