"let \\ z=-1+i\\ , \\ x=-1\\ and \\ y=1\\\\\n\n\\text{we get}\\\\\n \\ r= \\sqrt{x^2+y^2}=\\sqrt{1+1}=\\sqrt{2} \\ and\\\\\n\n\\ \\theta=\\arctan \\frac{y}{x}=\\arctan \\frac{1}{-1}=\\frac{3 \\pi}{4}\\\\\n\n\\text{Since, in the polar form, we have}\\\\\n\n\\ z=r(\\cos \\theta+i \\sin \\theta)\\ .\\\\\n\n\n\n\\text{So, we get}\\\\\n\n\\ z=\\sqrt{2}(\\cos \\frac{3 \\pi}{4}+i \\sin\\frac{3 \\pi}{4}).\\\\\n\\text{and}\\\\\n\\ z^{16}=(\\sqrt{2})^{16}(\\cos \\frac{3 \\pi}{4}+i \\sin\\frac{3 \\pi}{4})^{16}\\ .\\\\\n\n\\text{From De Moivre's Theorem, we have}\\\\\n\n(\\cos \\theta+i \\sin \\theta)^{n}=\\cos n \\theta+i \\sin n \\theta\\\\\n\n\\text{So, we get}\\\\\n\n\\ z^{16}=(\\sqrt{2})^{16}(\\cos 12 \\pi+i \\sin 12 \\pi)\\\\\n\\ \\ \\ \\ \\ \\ \\ =(\\sqrt{2})^{16}(\\cos 0+i \\sin 0)=256\\ .\\\\\n\n\n\n\\text{Also, we get}\\\\\n\n\\ \\frac{1}{z^{6}}=z^{-6}=(\\sqrt{2})^{-6}(\\cos \\frac{3 \\pi}{4}+i \\sin\\frac{3 \\pi}{4})^{-6}\\ .\\\\\n\n\\ z^{-6}=(\\sqrt{2})^{-6}(\\cos \\frac{-9 \\pi}{2}+i \\sin \\frac{-9 \\pi}{2})\\\\\n\\ \\ \\ \\ \\ \\ \\ \\ =(\\sqrt{2})^{-6}(\\cos \\frac{- \\pi}{2}+i \\sin \\frac{- \\pi}{2})=-\\frac{1}{8}i\\ .\\\\\n\n\\text{So, we can conclude that}\\\\\n\n1. \\ (-1+i)^{16}\\text{ is real and equal} \\ 256\\ .\\\\\n\n2.\\ (-1+i)^{-6} \\text{ is purely imaginary and equal} \\ -\\frac{1}{8}i\\ \\\\"
Comments
Leave a comment