Express −1 + i in polar form. Hence show that (−1 + i )^16 is real and that 1/(−1 + i )^6
is purely imaginary, giving the value for each.
1
Expert's answer
2020-05-25T19:09:33-0400
letz=−1+i,x=−1andy=1we getr=x2+y2=1+1=2andθ=arctanxy=arctan−11=43πSince, in the polar form, we havez=r(cosθ+isinθ).So, we getz=2(cos43π+isin43π).andz16=(2)16(cos43π+isin43π)16.From De Moivre’s Theorem, we have(cosθ+isinθ)n=cosnθ+isinnθSo, we getz16=(2)16(cos12π+isin12π)=(2)16(cos0+isin0)=256.Also, we getz61=z−6=(2)−6(cos43π+isin43π)−6.z−6=(2)−6(cos2−9π+isin2−9π)=(2)−6(cos2−π+isin2−π)=−81i.So, we can conclude that1.(−1+i)16 is real and equal256.2.(−1+i)−6 is purely imaginary and equal−81i
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments