Precalculus
Good day sir could you please assist for solutions to this problems for Precalculus Pre-engineering, which is due today.
*Problem 1*
For the expression
f(x)=log((1-|x|) ÷ (1+|x|))
Determine:
• it's largest domain;
• it's intersections with the x-axis (if any);
• it's intersection with the y-axis (if any);
• it's sign;
• when appropriate, end behaviours and behaviours at accumulation points of the domain which are not in the domain, possible symptoms.
*Problem 2*
Compute, showing the procedure,
limit from x to positive infinity ( square root symbol with x^2 - 3x - square root symbol with x^2 - 5x + 1)
*Problem 3*
Compute, showing the procedure.,
limit from x to negative infinity of the expression (square root with x^6 - x^2)÷(1-2x)
Problem 1
"\\dfrac{1-|x|}{1+|x|}>0=>1-|x|>0=>|x|<1"
"Domain: (-1, 1)"
"x-" intercept: "y=0=>0=\\log(\\dfrac{1-|x|}{1+|x|})=>\\dfrac{1-|x|}{1+|x|}=1"
Point "(0, 0)."
"y-" intercept: "x=0=>y(0)=\\log(\\dfrac{1-|0|}{1+|0|})=0"
Point "(0, 0)."
The graph passes through the origin.
"0<\\dfrac{1-|x|}{1+|x|}<1, x\\in(-1, 0)\\cup(0, 1)"
Then "f(x)<0, x\\in(-1, 0)\\cup(0, 1)" and "f(0)=0."
"Range: (-\\infin, \\infin)"
"\\lim\\limits_{x\\to1^-}f(x)=\\lim\\limits_{x\\to1^-}\\log(\\dfrac{1-|x|}{1+|x|})=-\\infin"
Problem 2
"=\\lim\\limits_{x\\to\\infin}(\\dfrac{x^2-3x-(x^2-5x+1)}{\\sqrt{x^2-3x}+\\sqrt{x^2-5x+1}})"
"=\\lim\\limits_{x\\to\\infin}(\\dfrac{\\dfrac{2x}{x}-\\dfrac{1}{x}}{\\sqrt{\\dfrac{x^2}{x^2}-\\dfrac{3x}{x^2}}+\\sqrt{\\dfrac{x^2}{x^2}-\\dfrac{5x}{x^2}+\\dfrac{1}{x^2}}})"
"=\\lim\\limits_{x\\to\\infin}(\\dfrac{2-\\dfrac{1}{x}}{\\sqrt{1-\\dfrac{3}{x}}+\\sqrt{1-\\dfrac{5}{x}+\\dfrac{1}{x^2}}})"
"=\\dfrac{2-0}{\\sqrt{1-0}+\\sqrt{1-0+0}}=1"
Problem 3
"=\\lim\\limits_{x\\to-\\infin}\\dfrac{-x\\sqrt{x^4-1}}{1-2x}"
"=\\lim\\limits_{x\\to-\\infin}\\dfrac{-\\sqrt{x^4-1}}{\\dfrac{1}{x}-\\dfrac{2x}{x}}"
"=\\lim\\limits_{x\\to-\\infin}\\dfrac{\\sqrt{x^4-1}}{2-\\dfrac{1}{x}}=\\infin"
Comments
Leave a comment