Question #248581

Question 1 [20]

A simple gear train of 30 and 50 teeth for pinion and gear wheel respectively, is used to drive an electric wheelchair at a velocity that is double the maximum velocity of slip. The pinion has an equal addendum as the gear wheel, a module of 3 mm, and a pressure angle of 14.5o. The wheelchair has a maximum velocity of 5 m/s when its pinion rotates at 800 r.p.m. Calculate:

1.1. The

1.2. The

1.3. The

1.4. The

1.5. The

1.6. The


magnitude of the velocity of slip of gears in mesh. (2) angular speed of the gear wheel in rad/s. (4) maximum length of a path of the approach in mm. (2) length of a path of a recess in mm. (7) addendum of the gears in mm. (7) contact ratio. (8)



1
Expert's answer
2021-10-10T09:32:48-0400

Solution;

The given data;

No. of teeth on pinion(t)=30

No. of teeth on gear wheel (T)=50

Module(m)=3mm

Pressure angle(ϕ\phi )=14.5°c

Velocity of wheel chair(VwV_w)=5m/s

Rotation of pinion(NpN_p)=800r.p.m

(1.1) Magnitude of velocity of slip;

Vs=2×VwV_s=2×V_w

Vs=2×5m/sV_s=2×5m/s

Vs=10m/sV_s=10m/s

(1.2)Angular speed of the gear wheel ;

NpNg=TgTp\frac{N_p}{N_g}=\frac{T_g}{T_p}

Ng=Np×TpTgN_g=\frac{N_p×T_p}{T_g}

Ng=800×3050N_g=\frac{800×30}{50}

Ng=480r.p.mN_g=480 r.p.m

Convert into angular speed;

wg=2πNg60w_g=\frac{2πN_g}{60} =2×π×48060\frac{2×π×480}{60}

wg=50.26rad/sw_g=50.26rad/s

(1.3) Maximum path of approach;

pa=rsin(ϕ)p_a=rsin(\phi)

r is the radius of pinion pitch circle.

r=mTp2r=\frac{mT_p}{2} =3×302=45mm\frac{3×30}{2}=45mm

pa=45sin(14.5°)p_a=45sin(14.5°)

pa=11.27mmp_a=11.27mm

(1.4)length of path of recess;

Pitch radius of gear wheel,R;

R=mTg2=3×502R=\frac{mT_g}{2}=\frac{3×50}{2} =75mm

Addendum radius of pinion is given by;

ra=r1+Rr(Rr+2)sin2ϕr_a=r\sqrt{1+\frac Rr(\frac Rr+2)sin^2\phi}

ra=451+7545(7545+2)sin2(14.5)r_a=45\sqrt{1+\frac{75}{45}(\frac{75}{45}+2)sin^2(14.5)}

ra=52.92mmr_a=52.92mm

Path of recess,prp_r ;

pr=ra2r2cos2ϕrsinϕp_r=\sqrt{r_a^2-r^2cos^2\phi}-rsin\phi

pr=52.922452cos2(14.5)45sin(14.5)p_r=\sqrt{52.92^2-45^2cos^2(14.5)}-45sin(14.5)

pa=18.77mmp_a=18.77mm

(1.5) Addendum of the gears ;

Ag=R[1+rR(rR+2)sin2ϕ1A_g=R[\sqrt{1+\frac{r}{R}(\frac{r}{R}+2)sin^2\phi}-1

Ag=75[1+4575(4575+2)sin214.51A_g=75[\sqrt{1+\frac{45}{75}(\frac{45}{75}+2)sin^214.5}-1

Ag=3.585mmA_g=3.585mm

(1.6) contact ratio;

Path of contact;

pc=pa+prp_c=p_a+p_r

pa=RaR2cos2ϕRsinϕp_a=\sqrt{R_a-R^2cos^2\phi}-Rsin\phi

pa=78.5852752cos214.575sin(14.5)p_a=\sqrt{78.585^2-75^2cos^214.5}-75sin(14.5)

pa=11.2754mmp_a=11.2754mm

Hence;

pc=11.2754+118.77=30.05mmp_c=11.2754+118.77=30.05mm

The pitch circumference;

Cp=3πC_p=3π

Hence the contact ratio;

pcCp×cosϕ\frac{p_c}{C_p×cos\phi} =30.05mm3×π×cos(14.5)\frac{30.05mm}{3×π×cos(14.5)}

=3.293=3.293



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS