Answer to Question #248059 in Mechanical Engineering for ramyr

Question #248059

(4x^3-3y^2)dx + 6xydy=0,f(-1)=0


1
Expert's answer
2021-10-10T09:33:25-0400
6xyy3y2=4x36xyy'-3y^2=-4x^3

y12xy=23x2y1y'-\dfrac{1}{2x}y=-\dfrac{2}{3}x^2y^{-1}

v=y1n=y1(1)=y2v=y^{1-n}=y^{1-(-1)}=y^2

v=2yyv'=2yy'

12v12xv=23x2\dfrac{1}{2}v'-\dfrac{1}{2x}v=-\dfrac{2}{3}x^2

v1xv=43x2v'-\dfrac{1}{x}v=-\dfrac{4}{3}x^2

The integrating factor


μ(x)=1x\mu(x)=\dfrac{1}{x}

1xv1x2v=43x\dfrac{1}{x}v'-\dfrac{1}{x^2}v=-\dfrac{4}{3}x

d(vx)=43xdxd(\dfrac{v}{x})=-\dfrac{4}{3}xdx

Integrate


d(vx)=43xdx\int d(\dfrac{v}{x})=-\int \dfrac{4}{3}xdx

vx=23x2+C\dfrac{v}{x}=-\dfrac{2}{3}x^2+C


v=23x3+Cxv=-\dfrac{2}{3}x^3+Cx

y2=23x3+Cxy^2=-\dfrac{2}{3}x^3+Cx

y=±23x3+Cxy=\pm\sqrt{-\dfrac{2}{3}x^3+Cx}

Given y(1)=0y(-1)=0


0=±23(1)3+C(1)0=\pm\sqrt{-\dfrac{2}{3}(-1)^3+C(-1)}


C=23C=\dfrac{2}{3}

Answer:


y(x)=23x3+23xy(x)=-\sqrt{-\dfrac{2}{3}x^3+\dfrac{2}{3}x}

or


y(x)=23x3+23xy(x)=\sqrt{-\dfrac{2}{3}x^3+\dfrac{2}{3}x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment