Question #241215

A spherical ball of diameter 20 mm is initially maintained at a uniform temperature of 400 °C. It is first subjected to heat (h = 10 * W/(m ^ 2 - K)) treatment first by passing ambient air at 20 °C until the temperature at its center line is lowered down to 335 °C. The spherical ball is next dipped in a liquid pool at 20 °C with a very high heat transfer coefficient (h = 6000 * W/(m ^ 2 - K)) due to boiling until the center of the sphere cools down to 50 °C. What is the overall time required to complete this heat treatment plus quenching process.


Assume the following material properties: rho = 3000 kg / (m ^ 3) , C =


1000 J kg-K' rho = 3000 kg / (m ^ 3) , a = 6.66 x 10-6 m² / sec


1
Expert's answer
2021-09-24T02:12:50-0400

D=20mm,r=10mm=0.01m

Ti1=400°C{T_i}_{1}=400°C

h1=10W/m2K

T1=20°C{T_{\infty}}_1=20°C

T1=335°C

Ti2=335°C{T_i}_{2}=335°C

h2=6000W/m2K

T2=20°C{T_\infty}_2=20°C

T2=50°C

ρ=3000kg/m3\rho=3000kg/m^{3}

C=1000J/kgK

α\alpha =6.66*10-6m2/s

VA=r3\frac{V}{A}=\frac{r}{3}

T1T1Ti1T1=exp[h1At1ρCV]=exp[h13t1ρCr]\frac{T_1-{T_\infty}_1}{{T_i}_1-{T_\infty}_1}=exp^{[-\frac{h_1At_1}{\rho CV}]}=exp^{[-\frac{h_13t_1}{\rho Cr}]}

3352040020=exp[310t1300010000.01]\frac{335-20}{400-20}=exp^{[-\frac{3*10*t_1}{3000*1000*0.01}]}

6376=exp0.001t1\frac{63}{76}=exp^{-0.001t_1}

t1=187.6s

T2T2Ti2T2=exp[h23t2ρCr]\frac{T_2-{T_\infty}_2}{{T_i}_2-{T_\infty}_2}=exp^{[-\frac{h_23t_2}{\rho Cr}]}

502033520=exp[36000t1300010000.01]\frac{50-20}{335-20}=exp^{[-\frac{3*6000*t_1}{3000*1000*0.01}]}

221=exp0.6t2\frac{2}{21}= exp^{-0.6t_2}

t2=3.91s

Overall time,t=t1+t2

=(187.6+3.91)s

=191.51s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS