Question #240224
2.4 A force F is applied at point A of the block with edge lengths of a, b, c Determine (1) the projections of F on the x, y and z axes; (2) the moments of F about x, y and z axes; (3) the moment of F about OB axis.
1
Expert's answer
2021-09-22T00:22:41-0400



(1)


Fx=FsinβcosαF_x=-|\vec F|\sin \beta\cos \alpha

Fy=FcosβcosαF_y=-|\vec F|\cos \beta\cos \alpha

Fz=FsinαF_z=|\vec F|\sin \alpha

(2)


F=(Fsinβsinα,Fsinβcosα,Fcosβ)\vec F=(-|\vec F|\sin \beta\sin \alpha, -|\vec F|\sin \beta\cos \alpha, |\vec F|\cos \beta)

r=(a,b,c)\vec r=(a, b, c)

MO=r×F\vec M_O=\vec r \times\vec F

=ijkabcFsinβcosαFcosβcosαFsinα=\begin{vmatrix} \vec i & \vec j & \vec k \\ a & b & c\\ -|\vec F|\sin \beta\cos \alpha & -|\vec F|\cos \beta\cos \alpha & |\vec F|\sin \alpha\\ \end{vmatrix}

=(Fbsinα+Fccosβcosα)i=( |\vec F|b\sin \alpha+|\vec F|c\cos \beta\cos \alpha)\vec i

+(FasinαFcsinβcosα)j+(- |\vec F|a\sin \alpha-|\vec F|c\sin \beta\cos \alpha)\vec j

+(Facosαcosβ+Fbsinβcosα)k+(- |\vec F|a\cos \alpha\cos \beta+|\vec F|b\sin \beta\cos \alpha)\vec k

Mx=i(r×F)=M_x=\vec i\cdot(\vec r\times\vec F)=

=Fbsinα+Fccosβcosα= |\vec F|b\sin \alpha+|\vec F|c\cos \beta\cos \alpha

My=j(r×F)=M_y=\vec j\cdot(\vec r\times\vec F)=

=FasinαFcsinβcosα=- |\vec F|a\sin \alpha-|\vec F|c\sin \beta\cos \alpha

Mz=k(r×F)=M_z=\vec k\cdot(\vec r\times\vec F)=

Facosαcosβ+Fbsinβcosα- |\vec F|a\cos \alpha\cos \beta+|\vec F|b\sin \beta\cos \alpha

(3)


OB=(a,0,c))\overrightarrow{OB}=(a, 0, c))

u=(aa2+b2,0,ca2+c2)\vec u=(\dfrac{a}{\sqrt{a^2+b^2}}, 0, \dfrac{c}{\sqrt{a^2+c^2}})

MOB=u(r×F)=M_{OB}=\vec u\cdot(\vec r\times\vec F)=

=Fabsinα+Faccosβcosαa2+b2=\dfrac{ |\vec F|ab\sin \alpha+|\vec F|ac\cos \beta\cos \alpha}{\sqrt{a^2+b^2}}

+Faccosαcosβ+Fbcsinβcosαa2+b2+\dfrac{- |\vec F|ac\cos \alpha\cos \beta+|\vec F|bc\sin \beta\cos \alpha}{\sqrt{a^2+b^2}}

=Fabsinα+Fbcsinβcosαa2+b2=\dfrac{ |\vec F|ab\sin \alpha+|\vec F|bc\sin \beta\cos \alpha}{\sqrt{a^2+b^2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Blaze
23.09.21, 09:12

Thank you so much!

LATEST TUTORIALS
APPROVED BY CLIENTS