"m = 100\\textsf{ kg}\\\\\ns = 800\\textsf{ kN\/m}L\\\\\nF = 400\\textsf{ N}\\\\\n\\omega = 3000\\textsf{ rpm}= 314.2\\textsf{ rad\/s}\\\\\n\\textsf{(using 1 rev = 2\u03c0 rad)}\\\\\nx_2 = x_1\/4"
We know that angular speed or natural circular frequency of free vibrations;
"\\omega_n= \\sqrt\\dfrac sm= \\sqrt\\dfrac{800\u00d710\u00b3}{100}= 89.44 \\textsf{ rad\/s}"
For the amplitude;
"\\log_e \\dfrac{x_1}{x_2} = a\u00d7 \\dfrac{2\u03c0}{\\sqrt{(\\omega_n)\u00b2-a\u00b2}}"
"\\log_e4 = \\dfrac{2\u03c0a}{\\sqrt{(89.44)\u00b2-a\u00b2}}"
"a =\\dfrac{ 2236 log(2)}{(25 \\sqrt{(\u03c0^2 + log4)}}"
"a=19.27"
"c= a \u00d7 2m = 19.27 \u00d7 2 \u00d7 10= 385.4\\textsf{ N\/m\/s}"
"x_o = \\dfrac Fs = \\dfrac{400}{800\u00d7 10\u00b3}= 0.0005m"
Amplitude of the forced vibration;
"x_{\\textsf{max}} = \\dfrac{x_o}{\\sqrt{\\dfrac{c\u00b2\\omega\u00b2}{s\u00b2}+[1-\\dfrac{\\omega\u00b2}{\\omega_n\u00b2}]\u00b2}}"
"= \\dfrac{0.0005}{\\sqrt{\\dfrac{385.4\u00b2\u00d7314.2\u00b2}{(800\u00d710\u00b3)\u00b2}+[1-\\dfrac{314.2\u00b2}{89.44\u00b2}]\u00b2}}"
"= 0.00004408m = 0.0044mm"
[0.044mm; 35.2 N]
Comments
Leave a comment