The tension in cable BC is 725 Newton. Determine the resultant of the three forces exerted at point B of beam AB.
For the cable BC
We calculate the forces along the x and y direction as below
"(F_{BC})_x=-725N(\\frac{840}{1160})"
=-525N
"(F_{BC})y=725N(\\frac{800}{1160})"
=500N
For the 500N force,
"(F_{500})_x=-500N(\\frac{3}{5})"
=-300N
"(F_{500})_y=-500N(\\frac{4}{5})"
=-400N
For the 780N force,
"(F_{780})_x=780N(\\frac{12}{13})"
=720N
"(F_{780})_y=-780N(\\frac{5}{13})"
=-300N
Total force along x direction is;
"F_x=(F_{BC})_x+(F_{500})_x+(F_{780})_x"
=-525N-300N+720N
=-105N
Total force along y direction is;
"F_y=(F_{BC})_y+(F_{500})_y+(F_{780})_y"
=500N-400N-300N
=-200N
The resultant force is;
R="\\sqrt{\\smash[b]{(F_x)^{2}+(F_y)^{2}}}"
"=\\sqrt{\\smash[b]{(-105N)^{2}+(-200N)^{2}}}"
=225.89N
Comments
Leave a comment