Question #241167

 The tension in cable BC is 725 Newton. Determine the resultant of the three forces exerted at point B of beam AB.



1
Expert's answer
2021-09-24T02:14:32-0400


For the cable BC

We calculate the forces along the x and y direction as below

(FBC)x=725N(8401160)(F_{BC})_x=-725N(\frac{840}{1160})

=-525N

(FBC)y=725N(8001160)(F_{BC})y=725N(\frac{800}{1160})

=500N

For the 500N force,

(F500)x=500N(35)(F_{500})_x=-500N(\frac{3}{5})

=-300N

(F500)y=500N(45)(F_{500})_y=-500N(\frac{4}{5})

=-400N

For the 780N force,

(F780)x=780N(1213)(F_{780})_x=780N(\frac{12}{13})

=720N

(F780)y=780N(513)(F_{780})_y=-780N(\frac{5}{13})

=-300N

Total force along x direction is;

Fx=(FBC)x+(F500)x+(F780)xF_x=(F_{BC})_x+(F_{500})_x+(F_{780})_x

=-525N-300N+720N

=-105N

Total force along y direction is;

Fy=(FBC)y+(F500)y+(F780)yF_y=(F_{BC})_y+(F_{500})_y+(F_{780})_y

=500N-400N-300N

=-200N

The resultant force is;

R=(Fx)2+(Fy)2\sqrt{\smash[b]{(F_x)^{2}+(F_y)^{2}}}

=(105N)2+(200N)2=\sqrt{\smash[b]{(-105N)^{2}+(-200N)^{2}}}

=225.89N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS