For the cable BC
We calculate the forces along the x and y direction as below
( F B C ) x = − 725 N ( 840 1160 ) (F_{BC})_x=-725N(\frac{840}{1160}) ( F BC ) x = − 725 N ( 1160 840 )
=-525N
( F B C ) y = 725 N ( 800 1160 ) (F_{BC})y=725N(\frac{800}{1160}) ( F BC ) y = 725 N ( 1160 800 )
=500N
For the 500N force,
( F 500 ) x = − 500 N ( 3 5 ) (F_{500})_x=-500N(\frac{3}{5}) ( F 500 ) x = − 500 N ( 5 3 )
=-300N
( F 500 ) y = − 500 N ( 4 5 ) (F_{500})_y=-500N(\frac{4}{5}) ( F 500 ) y = − 500 N ( 5 4 )
=-400N
For the 780N force,
( F 780 ) x = 780 N ( 12 13 ) (F_{780})_x=780N(\frac{12}{13}) ( F 780 ) x = 780 N ( 13 12 )
=720N
( F 780 ) y = − 780 N ( 5 13 ) (F_{780})_y=-780N(\frac{5}{13}) ( F 780 ) y = − 780 N ( 13 5 )
=-300N
Total force along x direction is;
F x = ( F B C ) x + ( F 500 ) x + ( F 780 ) x F_x=(F_{BC})_x+(F_{500})_x+(F_{780})_x F x = ( F BC ) x + ( F 500 ) x + ( F 780 ) x
=-525N-300N+720N
=-105N
Total force along y direction is;
F y = ( F B C ) y + ( F 500 ) y + ( F 780 ) y F_y=(F_{BC})_y+(F_{500})_y+(F_{780})_y F y = ( F BC ) y + ( F 500 ) y + ( F 780 ) y
=500N-400N-300N
=-200N
The resultant force is;
R=( F x ) 2 + ( F y ) 2 \sqrt{\smash[b]{(F_x)^{2}+(F_y)^{2}}} ( F x ) 2 + ( F y ) 2
= ( − 105 N ) 2 + ( − 200 N ) 2 =\sqrt{\smash[b]{(-105N)^{2}+(-200N)^{2}}} = ( − 105 N ) 2 + ( − 200 N ) 2
=225.89N
Comments