Question #175038

The Fermi energy level for copper is 6.25 eV. Determine the temperature at 

which there is a 1% probability that an energy state 0.30 eV below the Fermi 

energy level will not contain an electron.


1
Expert's answer
2021-04-01T01:09:23-0400

The probability that the state is empty, is 


1f(EV)=111+e(EVEF)/(kBT)1-f(E_V)=1-\dfrac{1}{1+e^{(E_V-E_F)/(k_BT)}}

Substitute


0.01=111+e(0.30 eV)/(kBT)0.01=1-\dfrac{1}{1+e^{(-0.30\ eV)/(k_BT)}}

e(0.30 eV)/(kBT)=110.011e^{(-0.30\ eV)/(k_BT)}=\dfrac{1}{1-0.01}-1

e(0.30 eV)/(kBT)=99e^{(0.30\ eV)/(k_BT)}=99

0.30 eVkBT=ln99\dfrac{0.30\ eV}{k_BT}=\ln99


T=0.30 eVkBln99T=\dfrac{0.30\ eV}{k_B\ln99}



kB=8.6173×105 eVK1k_B=8.6173\times10^{-5}\ eV\cdot K^{-1}



T=0.30 eV8.6173×105 eVK1ln99T=\dfrac{0.30\ eV}{8.6173\times10^{-5}\ eV\cdot K^{-1}\ln99}

T=757.62 KT=757.62\ K


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS