A double acting steam engine runs at 210 rpm. A curve of turning moment plotted on the crank angle base showed the following areas alternatively above and below the mean turning moment line: 880,500,620,720,360,560,440,520mm2
The scales used where 1mm= 520Nm and 1mm= 1o crank angle. If the total fluctuation in speed is limited to 1.85% of the ,mean speed, determine the mass of flywheel necessary if the radius gyration is 1.4m
Maximum energy ="880+E", where E is the minimum energy
"\\triangle E=E_{max}-E_{min}=E +880-E=880 mm^2"
"\\triangle E=880 \\times520 \\times \\frac{\\pi}{180}=7986.62666 Nm"
We know that "\\triangle E =mR^2w^2C_s"
"w_1=210 \\times1.85 \\times \\frac{2 \\pi}{60}=40.68"
"w_2=210 \\times \\frac{2 \\pi}{60}=10.995"
"w=\\frac{w_1+w_2}{2}=\\frac{40.68+10.995}{2}=25.8375"
"C_s=\\frac{w_1-w_2}{w}=\\frac{40.68-10.995}{25.8375}=1.1489"
"\\triangle E =mR^2w^2(\\frac{w_1-w_2}{w})=mR^2w(w_1-w_2)"
"m=\\frac{\\triangle E}{R^2w(w_1-w_2)}"
"m=\\frac{7986.62666}{1.4^2 \\times 25.8375(40.68-10.995)}=5.313 kg"
Comments
Leave a comment