Answer to Question #169865 in Mechanical Engineering for Rachel

Question #169865

Four horizontal, homogeneous, isotropic geologic formations, each 5m thick over lie one another. If the hydraulic conductivities are 10-4,10-6,10-4 and 10-6 respectively,, calculate the horizontal and vertical components of hydraulic conductivity for the equivalent homogeneous but anisotropic formation


1
Expert's answer
2021-04-01T01:03:39-0400

Here different conductivity is given as

K1=104,K2=106,K3=104andK4=106K_1= 10^{-4},K_2= 10^{-6},K_3=10^{-4} and K_4=10^{-6}

here z1=z2=z3=z4=5z_1=z_2=z_3=z_4=5

Now, horizantal component conductivity is given by following equation


Kx=K1z1+K2z2+K3z3+K4z4z1+z2+z3+z4K_x= \frac{K_1z_1+K_2z_2+K_3z_3+K_4z_4}{z_1+z_2+z_3+z_4}


Kx=104×5+106×5+104×5+106×55+5+5+5+5=10×104+10×10620K_x= \frac{10^{-4}\times 5+10^{-6}\times 5+10^{-4}\times 5+10^{-6}\times 5}{5+5+5+5+5}=\frac{10\times 10^{-4}+10\times10^{-6}}{20}

Kx=5.05×105msK_x=5.05\times 10^{-5} \frac{m}{s}


And vertical component hydraulic conductivity is given by following equation as

Kz=z1+z2+z3+z4z1K1+z2K2+z3K3+z4K4K_z=\frac{ z_1+z_2+z_3+z_4}{\frac{z_1}{K_1}+\frac{z_2}{K_2}+\frac{z_3}{K_3}+\frac{z_4}{K_4}}


Kz=205104+5106+5106+5104K_z=\frac{ 20}{\frac{5}{10^{-4}}+\frac{5}{10^{-6}}+\frac{5}{10^{-6}}+\frac{5}{10^{-4}}}


Kz=1.98×106K_z= 1.98 \times 10^{-6} m/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment