Make the parabola y=ax²+bx+c pass through (0,-2) and the tangent to the line at 3x+y+3=0 at (-1,0)
Substitute (x, y) = (0, -2) in the equation y=ax2 +bx +c
-2=a (0)2 +b (0) + c
C=-2
Substitute (x, y) = (-1, 0) in the equation y=ax2 +bx +c
0=a (-1)1 +b (-1) +c
0=a – b + c
b=a + c…(i)
From the equation y=ax2 +bx +c, y'=2ax+b
From the equation y=-3x-3 at (-1,0) the slope is -3
Plugging y'=-3 and x=-1 in the equation y'=2ax+b
-3=2a (-1) +b
-3=-2a+b
b=-3 +2a…(ii)
c=-2…(iii)
Substituting the value of c, (-2) in the equation b=a + c
b=a-2…(iv)
equating equation (ii) to (iv)
-3+2a= a-2
2a-a=3-2
a=1
b=a-2
b=1-2
b=-1
Plugging the values of a, b, and c in the equation y=ax2 +bx +c
y=x2-x -2
Comments
Leave a comment