x = 5 t 3 − 105 t d x d t = 5 t 2 − 105 ∴ a x ( t ) = d 2 x d t 2 = 10 t \begin{aligned}
&x = 5t³ - 105t\\
\\
&\dfrac{dx}{dt} = 5t² - 105\\
\\
&\therefore a_x(t) =\dfrac{d²x}{dt²} = 10t
\end{aligned} x = 5 t 3 − 105 t d t d x = 5 t 2 − 105 ∴ a x ( t ) = d t 2 d 2 x = 10 t
a x ( 2 ) = 10 ( 2 ) = 20 i n / s 2 a_x(2) = 10(2) = 20 \ in/s² a x ( 2 ) = 10 ( 2 ) = 20 in / s 2
Since, ( a x ) 2 + ( a y ) 2 = a \textsf{Since, } \sqrt{(a_x)² +(a_y)²} = a Since, ( a x ) 2 + ( a y ) 2 = a
75 = 2 0 2 + ( a y ) 2 75 = \sqrt{20² + (a_y)²} 75 = 2 0 2 + ( a y ) 2
5625 = 400 + ( a y ) 2 5625 = 400 + (a_y)² 5625 = 400 + ( a y ) 2
a y = 5225 = 72.28 i n a_y = \sqrt{5225 } = 72.28 \ in a y = 5225 = 72.28 in
v y ( t ) = 72.28 t y ( t ) = 72.28 t 2 v_y (t) = 72.28t\\
y(t) = 72.28t² v y ( t ) = 72.28 t y ( t ) = 72.28 t 2
x ( 4 ) = 5 ( 4 ) 3 − 105 ( 4 ) = 320 − 420 = − 100 i n x ( 0 ) = 5 ( 0 ) 3 − 105 ( 0 ) = 0 i n x(4) = 5(4)³ - 105(4) = 320 - 420 = -100in\\
x(0) = 5(0)³ - 105(0) = 0in x ( 4 ) = 5 ( 4 ) 3 − 105 ( 4 ) = 320 − 420 = − 100 in x ( 0 ) = 5 ( 0 ) 3 − 105 ( 0 ) = 0 in
y ( 4 ) = 72.28 ( 4 ) 2 = 1156.5 i n y ( 0 ) = 0 i n y(4) =72.28(4)² = 1156.5 in\\y(0) = 0in y ( 4 ) = 72.28 ( 4 ) 2 = 1156.5 in y ( 0 ) = 0 in
r ( 4 ) = ( x ) 2 + ( y ) 2 = − 10 0 2 + 1156. 5 2 = 1160.8 i n r(4) = \sqrt{(x)² +(y)²} = \\\sqrt{-100² + 1156.5²} = 1160.8\ in r ( 4 ) = ( x ) 2 + ( y ) 2 = − 10 0 2 + 1156. 5 2 = 1160.8 in
r ( 0 ) = ( x ) 2 + ( y ) 2 = 0 2 + 0 2 = 0 i n r(0) = \sqrt{(x)² +(y)²} = \\\sqrt{0² + 0²} = 0\ in r ( 0 ) = ( x ) 2 + ( y ) 2 = 0 2 + 0 2 = 0 in
Total Velocity = r ( 4 ) − r ( 0 ) t ( 4 ) − t ( 0 ) = 1160.8 4 = 290.2 i n s − 2 = 19.8 f t / s 2 \textsf{Total Velocity} = \dfrac{r(4) - r(0) }{ t(4) - t(0)}
\\= \dfrac{1160.8}{4} = 290.2\ ins^{-2} = 19.8\ ft/s² Total Velocity = t ( 4 ) − t ( 0 ) r ( 4 ) − r ( 0 ) = 4 1160.8 = 290.2 in s − 2 = 19.8 f t / s 2
Comments