A small 250g collar C can slide on a semicircular rod which is made to rotate about the vertical AB at a constant rate of 7.5rad/s. Determine the 3 values of theta for which the collar will not slide on the rod, assuming no friction b/w the collar and the rod.
We can assume r= 950 as we have not been provided.
R=rsinθ=950sinθ;v=RwR=rsin\theta=950sin\theta; v=RwR=rsinθ=950sinθ;v=Rw
a0=v2R=R2w2R=rsinθw2a_0=\frac{v^2}{R}=\frac{R^2w^2}{R}=rsin\theta w^2a0=Rv2=RR2w2=rsinθw2
∑Fy=may ⟹ Ncosθ−mg=0 ⟹ N=mgcosθ\sum{Fy}=ma_y \implies Ncos \theta-mg=0 \implies N=\frac{mg}{cos\theta}∑Fy=may⟹Ncosθ−mg=0⟹N=cosθmg
∑Fx=max ⟹ Nsinθ−ma=0 ⟹ sinθ=maN\sum{Fx}=ma_x \implies Nsin \theta-ma=0 \implies sin \theta=\frac{ma}{N}∑Fx=max⟹Nsinθ−ma=0⟹sinθ=Nma
rsinθcosθw2−gsinθ=0rsin\theta cos\theta w^2-gsin\theta=0rsinθcosθw2−gsinθ=0
So,cosθ=grw2or sinθ=0So, cos \theta = \frac{g}{rw^2} or \space sin\theta=0So,cosθ=rw2gor sinθ=0
cosθ=9.80.95∗7.52 ⟹ θ=79.420cos\theta=\frac{9.8}{0.95*7.5^2} \implies \theta=79.42^0cosθ=0.95∗7.529.8⟹θ=79.420
sinθ=0 ⟹ θ=00or1800sin\theta=0 \implies \theta =0^0 or 180^0sinθ=0⟹θ=00or1800
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments