P=20 kW, N=1440 rpm, coefficient of friction=0.08 , Average pressure = 0.3 MPa
Ri/Ro=0.5/0.75 ,
So, axial force required
(i)
"F_a= \\frac {1}{2} \\times \\pi\\times pD_i\\times (D_o-D_i)"
"F_a= \\frac {1}{2} \\times 3.14\\times 0.3\\times150\\times (150-100)"
"F_a= 3532.5 N"
(ii) We know that, for power transmitted
"P= \\frac{2 \\times \\pi \\times N \\times T }{60}"
T= 132696.3 N-mm
Dm= "\\frac {150 +100}{2}= 125"
Using uniform wear theory
"T=\\frac{1}{2}\\times n \\times \\mu \\times F_a \\times D_m"
132696.3= 0.5 "\\times n \\times 0.08\\times 3532.5 \\times 125"
n= 7.5 it will be even number = 8
number of steel disc= 4
number of bronze disc= 4+1= 5
Average pressure
"T=\\frac{1}{2}\\times n \\times \\mu \\times F_a \\times D_m"
"132696.3 =0.5\\times 8 \\times 0.08\\times F_a \\times 125"
"F_a=3317.40 N"
(ii) For average pressure
"F_a= 0.5 \\times \\pi \\times 125 \\times p(150-100)"
p= 0.338 MPa
(iii)For actual maximum pressure
"F_a= 0.5 \\times \\pi \\times 100 \\times p(150-100)"
p= 0.422 MPa
Comments
Leave a comment