Mass of Ram= 800 Kg , and mass of pile= 2400 , ram strikes to pile at height of 2m , here
initial velocity of ram at time of striking = "\\sqrt {2gh}= \\sqrt{2\\times9.8\\times2}=6.26 m\/s" and
and initial velocity of pile = 0 m/s and velocity of ram after impact=
"v_1=\\sqrt {2gh}= \\sqrt{2\\times 9.8\\times .1}=1.4 m\/s"
Now the velocity of pile after imapct,
(a)
"m_1u_1+m_2u_2=m_1v_1+m_2v_2"
"800\\times6.26+2400\\times0=800\\times1.4+2400v_2"
"v2=1.62" m/s
(b) for coefficient of restitution
e= "\\frac{velocity after impact}{velocity after impact}= \\frac{1.62+1.4}{6.26}=0.482"
(c) Lost in energy = Change in kinetic energy = final kinetic energy- initail kinetic energy
"\\Delta KE= {(\\frac{1}{2}\\times m_1 (u_1)^2)+(\\frac{1}{2}\\times m_2 (u_2)^2)}- {(\\frac{1}{2}\\times m_1 (v_1)^2)+(\\frac{1}{2}\\times m_2 (v_2)^2)}"
"\\Delta KE= {(\\frac{1}{2}\\times 800(6.26)^2)+(\\frac{1}{2}\\times 2400 (0)^2)}- {(\\frac{1}{2}\\times 800 (1.4)^2)+(\\frac{1}{2}\\times 2400 (1.62)^2)}"
"\\Delta KE=18040.32 J"
Comments
Leave a comment