What is the Fourier cosine series for f(x) = 2-π, in the interval 0 ≤ x < 2π?
"We\\,\\,have\\\\f\\left( x \\right) =2-\\pi \\\\a_0=\\frac{2}{2\\pi}\\int_0^{2\\pi}{f\\left( x \\right) dx}=\\frac{2\\pi \\left( 2-\\pi \\right)}{\\pi}=2\\left( 2-\\pi \\right) \\\\a_n=\\frac{2}{2\\pi}\\int_0^{2\\pi}{f\\left( x \\right) \\cos \\frac{nx}{2}dx}=\\frac{1}{\\pi}\\left( 2-\\pi \\right) \\int_0^{2\\pi}{\\cos \\frac{nx}{2}dx}=\\\\=\\frac{2-\\pi}{\\pi}\\cdot \\frac{2}{n}\\sin \\frac{nx}{2}|_{0}^{2\\pi}=0\\\\f\\left( x \\right) =\\frac{a_0}{2}=2-\\pi"
Comments
Leave a comment