Let f be a differentiable function on ] [α, β and ]. x ∈[α, β Show that, if
f ′(x) = 0 and ,0 f ′′(x) > then f must have a local maximum at x.
"f'\\left( x \\right) =0,f''\\left( x \\right) <0\\\\\\\\Since\\,\\,f'' is\\,\\,continuous\\,\\,on\\,\\,\\left( \\alpha ,\\beta \\right) , f'' is\\,\\,negative\\,\\,on\\,\\,some\\,\\,interval\\,\\,\\left( x-\\varepsilon ,x+\\varepsilon \\right) \\\\Taylor's\\,\\,formula\\,\\,for\\,\\,\\left| \\varDelta \\right|<\\varepsilon :\\\\f\\left( x+\\varDelta \\right) =f\\left( x \\right) +f'\\left( x \\right) \\varDelta +\\frac{1}{2}f''\\left( \\xi \\right) \\varDelta ^2=f\\left( x \\right) +\\frac{1}{2}f''\\left( \\xi \\right) \\varDelta ^2,\\xi \\,\\,between\\,\\,x\\,\\,and\\,\\,x+\\varDelta \\\\f''\\left( t \\right) <0,t\\in \\left( x-\\varepsilon ,x+\\varepsilon \\right) \\Rightarrow f''\\left( \\xi \\right) <0\\Rightarrow f\\left( x+\\varDelta \\right) <f\\left( x \\right) \\Rightarrow \\\\\\Rightarrow x\\,\\,is\\,\\,a\\,\\,local\\,\\,\\max \\\\"
Comments
Leave a comment