Show that n=1 to ∞ ∑(-1)^n+1 5/7n+2 is conditionally convergent.
"\\sum_{n=1}^{\\infty}{\\left( -1 \\right) ^{n+1}\\frac{5}{7n+2}}\\,\\,-\\,\\,Leibnitz\\,\\,series:\\\\altering\\,\\,signs;\\\\\\frac{5}{7n+2}\\downarrow 0,n\\rightarrow \\infty \\\\Hence\\,\\,the\\,\\,series\\,\\,converges.\\\\The\\,\\,series\\ \\sum_{n=1}^{\\infty}{\\frac{5}{7n+2}}\\\\does\\,\\,not\\,\\,converge\\,\\,by\\,\\,the\\,\\,comparison\\,\\,test:\\\\\\underset{n\\rightarrow \\infty}{\\lim}\\frac{\\frac{5}{7n+2}}{\\frac{1}{n}}=\\underset{n\\rightarrow \\infty}{\\lim}\\frac{5}{7+\\frac{2}{n}}=\\frac{5}{7}\\\\and\\,\\,\\sum_{n=1}^{\\infty}{\\frac{1}{n}}\\,\\,does\\,\\,not\\,\\,converge\\\\Hence\\,\\,the\\,\\,series\\,\\,is\\,\\,conditionally\\,\\,convergent"
Comments
Leave a comment