Apply second substitution theorem evaluate
Integral 1 to 4 dt/(|t+4|√t)
"I=\\int_1^4\\frac {dt}{|t+4|\\sqrt t}"
Substitution:
"u=\\sqrt t" ; "du=\\frac12\\frac{dt}{\\sqrt t}";
"u_1=\\sqrt 1=1" ; "u_2=\\sqrt 4=2" ;
"I=\\int_1^4\\frac {dt}{|t+4|\\sqrt t}=2\\int_1^4\\frac {dt}{2|t+4|\\sqrt t}=2\\int_1^2\\frac {du}{|u^2+4|}=""2\\int_1^2\\frac {du}{u^2+4}"
Second substitution:
"v=\\frac{u}{2}"; "dv=\\frac{du}{2}";
"v_1=\\frac12"; "v_2=1";
"I=4\\int_{\\frac12}^1\\frac{dv}{4v^2+4}=\\int_{\\frac12}^1\\frac{dv}{v^2+1}=\\arctan{v}|_\\frac12^1=""\\arctan{1}-\\arctan{\\frac12}=\\frac{\\pi}{4}-\\arctan{\\frac12} \\approx0.32"
Comments
Leave a comment