I = ∫ 1 4 d t ∣ t + 4 ∣ t I=\int_1^4\frac {dt}{|t+4|\sqrt t} I = ∫ 1 4 ∣ t + 4∣ t d t
Substitution:
u = t u=\sqrt t u = t ; d u = 1 2 d t t du=\frac12\frac{dt}{\sqrt t} d u = 2 1 t d t ;
u 1 = 1 = 1 u_1=\sqrt 1=1 u 1 = 1 = 1 ; u 2 = 4 = 2 u_2=\sqrt 4=2 u 2 = 4 = 2 ;
I = ∫ 1 4 d t ∣ t + 4 ∣ t = 2 ∫ 1 4 d t 2 ∣ t + 4 ∣ t = 2 ∫ 1 2 d u ∣ u 2 + 4 ∣ = I=\int_1^4\frac {dt}{|t+4|\sqrt t}=2\int_1^4\frac {dt}{2|t+4|\sqrt t}=2\int_1^2\frac {du}{|u^2+4|}= I = ∫ 1 4 ∣ t + 4∣ t d t = 2 ∫ 1 4 2∣ t + 4∣ t d t = 2 ∫ 1 2 ∣ u 2 + 4∣ d u = 2 ∫ 1 2 d u u 2 + 4 2\int_1^2\frac {du}{u^2+4} 2 ∫ 1 2 u 2 + 4 d u
Second substitution:
v = u 2 v=\frac{u}{2} v = 2 u ; d v = d u 2 dv=\frac{du}{2} d v = 2 d u ;
v 1 = 1 2 v_1=\frac12 v 1 = 2 1 ; v 2 = 1 v_2=1 v 2 = 1 ;
I = 4 ∫ 1 2 1 d v 4 v 2 + 4 = ∫ 1 2 1 d v v 2 + 1 = arctan v ∣ 1 2 1 = I=4\int_{\frac12}^1\frac{dv}{4v^2+4}=\int_{\frac12}^1\frac{dv}{v^2+1}=\arctan{v}|_\frac12^1= I = 4 ∫ 2 1 1 4 v 2 + 4 d v = ∫ 2 1 1 v 2 + 1 d v = arctan v ∣ 2 1 1 = arctan 1 − arctan 1 2 = π 4 − arctan 1 2 ≈ 0.32 \arctan{1}-\arctan{\frac12}=\frac{\pi}{4}-\arctan{\frac12} \approx0.32 arctan 1 − arctan 2 1 = 4 π − arctan 2 1 ≈ 0.32
Comments