Apply second substitution theorem evaluate
i) integral 1 to 9 (√ t)/(2+√t)
"\\text{Now solving:}\\\\[2mm]\n\\int \\frac{1}{u} \\mathrm{~d} u\\\\[2mm]\n\\text{This is a standard integral:}\\\\[2mm]\n=\\ln (u)\\\\[3mm]\n\\text{Now solving:}\\\\[2mm]\n\\int 1 \\mathrm{~d} u\\\\[2mm]\n\\text{Apply constant rule:}\\\\[2mm]\n=\\boldsymbol{u}\\\\[2mm]\n\\text{Plug in solved integrals:}\\\\[2mm]\n\\begin{gathered}\n\\int u \\mathrm{~d} u+4 \\int \\frac{1}{u} \\mathrm{~d} u-4 \\int 1 \\mathrm{~d} u \\\\\n=4 \\ln (u)+\\frac{u^{2}}{2}-4 u\n\\end{gathered}\\\\[2mm]\n\\text{Plug in solved integrals:}\\\\[2mm]\n2 \\int \\frac{(u-2)^{2}}{u} \\mathrm{~d} u\\\\=8 \\ln (u)+u^{2}-8 u\\\\[2mm] \\text{ Undo substitution }\\\\ u=\\sqrt{t}+2 =-8(\\sqrt{t}+2)+(\\sqrt{t}+2)^{2}+8 \\ln (\\sqrt{t}+2)\\\\[2mm]\n\\text{The problem is solved:}\\\\[2mm]\n\\begin{gathered}\n\\int \\frac{\\sqrt{t}}{\\sqrt{t}+2} \\mathrm{~d} t \\\\\n=-8(\\sqrt{t}+2)+(\\sqrt{t}+2)^{2}+8 \\ln (\\sqrt{t}+2)+C\n\\end{gathered}""=t-4 \\sqrt{t}+8 \\ln (\\sqrt{t}+2)+C"
Evaluating the above function at [1,9], we have:
Comments
Leave a comment