If I: = [0,4], calculate the norms of the following partitions:
a) P1: = (0,1,2,4)
b) P2: = (0,2,3,4)
c) P3: = (0,1,1.5,2,3.4,4)
d) P4: = (0,.5,2.5,3.5,4)
Solution: The norm of a partition is merely the length of the largest subinterval into which the partition divides [a,b]. Clearly many partition have the same norm, so partition is not a function of the norm.
for "i=[a,b]" where "a<x_1<x_2<....<x_n<b," partition "p={x_1,x_2,....,x_n}" for above condition "norm=max\\{x_2-x_1,x_3-x_2,...,x_n-x_{n-1}\\}"
a)
"\\therefore x_2-x_1=1-0=1\n\\\\x_3-x_2=2-1=1\n\\\\x_4-x_3=4-2=2\n\\\\Hence ~ norm=max\\{x_2-x_1,x_3-x_2, x_4-x_3\\}\n\\\\norm=max=\\{1,1,2\\}\n\\\\norm=2"
Hence norm of the partition P1: = (0,1,2,4) is 2.
b)
"\\therefore x_2-x_1=2-0=2\n\\\\x_3-x_2=3-2=1\n\\\\x_4-x_3=4-3=1\n\\\\Hence ~ norm=max\\{x_2-x_1,x_3-x_2, x_4-x_3\\}\n\\\\norm=max=\\{2,1,1\\}\n\\\\norm=2"
Hence norm of the partition P2: = (0,2,3,4) is 2.
c)
"\\therefore x_2-x_1=1-0=1\n\\\\x_3-x_2=1.5-1=0.5\n\\\\x_4-x_3=2-1.5=0.5\n\\\\x_5-x_4=3.4-2=1.4\n\\\\x_6-x_5=4-3.4=0.6\n\\\\Hence ~ norm=max\\{x_2-x_1,x_3-x_2, x_4-x_3,x_5-x_4,x_6-x_5\\}\n\\\\norm=max=\\{1,0.5,0.5,1.4,0.6\\}\n\\\\norm=1.4"
Hence norm of the partition P3: = (0,1,1.5,2,3.4,4) is 1.4.
d)
"\\therefore x_2-x_1=0.5-0=0.5\n\\\\x_3-x_2=2.5-0.5=2\n\\\\x_4-x_3=3.5-2.5=1\n\\\\x_5-x_4=4-3.5=0.5\n\\\\Hence ~ norm=max\\{x_2-x_1,x_3-x_2, x_4-x_3,x_5-x_4\\}\n\\\\norm=max=\\{0.5,2,1,0.5\\}\n\\\\norm=2"
Hence norm of the partition P4: = (0,0.5,2.5,3.5,4) is 2.
Comments
Leave a comment