Let f be a differentiable function on [α, β ] and x ∈[α, β ] .Show that, if
f ′(x) = 0 and , f ′′(x) >0 then f must have a local maximum at x.
f′′(x)>0⇒f′′(t)>0,t∈(x−ε,x+ε),ε>0Taylors formula for Δ∈(−ε,ε):f(x+Δ)=f(x)+f′(x)Δ+12f′′(ξ)Δ2,ξ∈(x−Δ,x+Δ)⊂(x−ε,x+ε)⇒⇒f(x+Δ)=f(x)+12f′′(ξ)Δ2⩾f(x)f''\left( x \right) >0\Rightarrow f''\left( t \right) >0,t\in \left( x-\varepsilon ,x+\varepsilon \right) ,\varepsilon >0\\Taylors\,\,formula\,\,for\,\,\varDelta \in \left( -\varepsilon ,\varepsilon \right) :\\f\left( x+\varDelta \right) =f\left( x \right) +f'\left( x \right) \varDelta +\frac{1}{2}f''\left( \xi \right) \varDelta ^2,\xi \in \left( x-\varDelta ,x+\varDelta \right) \subset \left( x-\varepsilon ,x+\varepsilon \right) \Rightarrow \\\Rightarrow f\left( x+\varDelta \right) =f\left( x \right) +\frac{1}{2}f''\left( \xi \right) \varDelta ^2\geqslant f\left( x \right)f′′(x)>0⇒f′′(t)>0,t∈(x−ε,x+ε),ε>0TaylorsformulaforΔ∈(−ε,ε):f(x+Δ)=f(x)+f′(x)Δ+21f′′(ξ)Δ2,ξ∈(x−Δ,x+Δ)⊂(x−ε,x+ε)⇒⇒f(x+Δ)=f(x)+21f′′(ξ)Δ2⩾f(x)
Thus x is local minimum.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment