Answer to Question #314398 in Real Analysis for Pankaj

Question #314398

Let f be a differentiable function on [α, β ] and x ∈[α, β ] .Show that, if


f ′(x) = 0 and , f ′′(x) >0 then f must have a local maximum at x.

1
Expert's answer
2022-03-21T02:01:42-0400

f(x)>0f(t)>0,t(xε,x+ε),ε>0Taylor‘s  formula  for  Δ(ε,ε):f(x+Δ)=f(x)+f(x)Δ+12f(ξ)Δ2,ξ(xΔ,x+Δ)(xε,x+ε)f(x+Δ)=f(x)+12f(ξ)Δ2f(x)f''\left( x \right) >0\Rightarrow f''\left( t \right) >0,t\in \left( x-\varepsilon ,x+\varepsilon \right) ,\varepsilon >0\\Taylor‘s\,\,formula\,\,for\,\,\varDelta \in \left( -\varepsilon ,\varepsilon \right) :\\f\left( x+\varDelta \right) =f\left( x \right) +f'\left( x \right) \varDelta +\frac{1}{2}f''\left( \xi \right) \varDelta ^2,\xi \in \left( x-\varDelta ,x+\varDelta \right) \subset \left( x-\varepsilon ,x+\varepsilon \right) \Rightarrow \\\Rightarrow f\left( x+\varDelta \right) =f\left( x \right) +\frac{1}{2}f''\left( \xi \right) \varDelta ^2\geqslant f\left( x \right)

Thus x is local minimum.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment