c 1 + c 2 + . . . + c n n ≤ c 1 2 + c 2 2 + . . . + c n 2 ≤ ≤ c 1 + c 2 + . . . + c n c k > 0 , k = 1 , 2 , . . . , n c 1 + c 2 + . . . + c n n ≤ c 1 2 + c 2 2 + . . . + c n 2 ( c 1 + c 2 + . . . + c n n ) 2 ≤ ( c 1 2 + c 2 2 + . . . + c n 2 ) 2 ( c 1 + c 2 + . . . + c n ) 2 n ≤ c 1 2 + c 2 2 + . . . + c n 2 ( c 1 + c 2 + . . . + c n ) 2 ≤ n ( c 1 2 + c 2 2 + . . . + c n 2 ) \frac{c_1+c_2+...+c_n}{\sqrt{n}}\leq\sqrt{c_1^2+c_2^2+...+c_n^2}\leq \\
\leq c_1+c_2+...+c_n\\
c_k>0, k=1,2,...,n\\
\frac{c_1+c_2+...+c_n}{\sqrt{n}}\leq\sqrt{c_1^2+c_2^2+...+c_n^2}\\
(\frac{c_1+c_2+...+c_n}{\sqrt{n}})^2\leq(\sqrt{c_1^2+c_2^2+...+c_n^2})^2\\
\frac{(c_1+c_2+...+c_n)^2}{n}\leq c_1^2+c_2^2+...+c_n^2\\
(c_1+c_2+...+c_n)^2\leq n(c_1^2+c_2^2+...+c_n^2) n c 1 + c 2 + ... + c n ≤ c 1 2 + c 2 2 + ... + c n 2 ≤ ≤ c 1 + c 2 + ... + c n c k > 0 , k = 1 , 2 , ... , n n c 1 + c 2 + ... + c n ≤ c 1 2 + c 2 2 + ... + c n 2 ( n c 1 + c 2 + ... + c n ) 2 ≤ ( c 1 2 + c 2 2 + ... + c n 2 ) 2 n ( c 1 + c 2 + ... + c n ) 2 ≤ c 1 2 + c 2 2 + ... + c n 2 ( c 1 + c 2 + ... + c n ) 2 ≤ n ( c 1 2 + c 2 2 + ... + c n 2 )
If n = 1 , c 1 2 ≤ c 1 2 n=1, c_1^2\leq c_1^2 n = 1 , c 1 2 ≤ c 1 2 true.
Lets n = k , ( c 1 + c 2 + . . . + c k ) 2 ≤ k ( c 1 2 + c 2 2 + . . . + c k 2 ) n=k, (c_1+c_2+...+c_k)^2\leq k(c_1^2+c_2^2+...+c_k^2)\\ n = k , ( c 1 + c 2 + ... + c k ) 2 ≤ k ( c 1 2 + c 2 2 + ... + c k 2 ) .
Proof if n = k + 1 n=k+1 n = k + 1
( c 1 + c 2 + . . . + c k + 1 ) 2 ≤ ≤ ( k + 1 ) ( c 1 2 + c 2 2 + . . . + c k + 1 2 ) ( c 1 + c 2 + . . . + c k + 1 ) 2 = = ( ( c 1 + c 2 + . . . + c k ) + c k + 1 ) 2 = = ( c 1 + c 2 + . . . + c k ) 2 + + 2 ( c 1 + c 2 + . . . + c k ) c k + 1 + c k + 1 2 ≤ ≤ k ( c 1 2 + c 2 2 + . . . + c k 2 ) + + 2 ( c 1 + c 2 + . . . + c k ) c k + 1 + c k + 1 2 = = k ( c 1 2 + c 2 2 + . . . + c k 2 ) + + 2 c 1 c k + 1 + 2 c 2 c k + 1 + . . . + 2 c k c k + 1 + c k + 1 2 ≤ (c_1+c_2+...+c_{k+1})^2\leq\\\leq (k+1)(c_1^2+c_2^2+...+c_{k+1}^2)\\
(c_1+c_2+...+c_{k+1})^2=\\=((c_1+c_2+...+c_k)+c_{k+1})^2=\\
=(c_1+c_2+...+c_k)^2+\\+2(c_1+c_2+...+c_k)c_{k+1}+c_{k+1}^2
\leq\\\leq k(c_1^2+c_2^2+...+c_{k}^2)+\\
+2(c_1+c_2+...+c_k)c_{k+1}+c_{k+1}^2=\\
=k(c_1^2+c_2^2+...+c_{k}^2)+\\
+2c_1c_{k+1}+2c_2c_{k+1}+...+2c_kc_{k+1}+c_{k+1}^2\leq ( c 1 + c 2 + ... + c k + 1 ) 2 ≤ ≤ ( k + 1 ) ( c 1 2 + c 2 2 + ... + c k + 1 2 ) ( c 1 + c 2 + ... + c k + 1 ) 2 = = (( c 1 + c 2 + ... + c k ) + c k + 1 ) 2 = = ( c 1 + c 2 + ... + c k ) 2 + + 2 ( c 1 + c 2 + ... + c k ) c k + 1 + c k + 1 2 ≤ ≤ k ( c 1 2 + c 2 2 + ... + c k 2 ) + + 2 ( c 1 + c 2 + ... + c k ) c k + 1 + c k + 1 2 = = k ( c 1 2 + c 2 2 + ... + c k 2 ) + + 2 c 1 c k + 1 + 2 c 2 c k + 1 + ... + 2 c k c k + 1 + c k + 1 2 ≤
( a − b ) 2 ≥ 0 a 2 − 2 a b + b 2 ≥ 0 2 a b ≤ a 2 + b 2 (a-b)^2\geq 0\\
a^2-2ab+b^2\geq0\\
2ab\leq a^2+b^2 ( a − b ) 2 ≥ 0 a 2 − 2 ab + b 2 ≥ 0 2 ab ≤ a 2 + b 2
≤ k ( c 1 2 + c 2 2 + . . . + c k 2 ) + + c 1 2 + c k + 1 2 + c 2 2 + c k + 1 2 + . . . + c k 2 + c k + 1 2 + c k + 1 2 = = ( k + 1 ) ( c 1 2 + c 2 2 + . . . + c k 2 ) + ( k + 1 ) c k + 1 2 = ( k + 1 ) ( c 1 2 + c 2 2 + . . . + c k 2 + c k + 1 2 ) \leq k(c_1^2+c_2^2+...+c_{k}^2)+\\
+c_1^2+c^2_{k+1}+c_2^2+c^2_{k+1}+...+c^2_k+c^2_{k+1}+c_{k+1}^2=\\
=(k+1)(c_1^2+c_2^2+...+c_{k}^2)+(k+1)c^2_{k+1}=\\
(k+1)(c_1^2+c_2^2+...+c_{k}^2+c^2_{k+1}) ≤ k ( c 1 2 + c 2 2 + ... + c k 2 ) + + c 1 2 + c k + 1 2 + c 2 2 + c k + 1 2 + ... + c k 2 + c k + 1 2 + c k + 1 2 = = ( k + 1 ) ( c 1 2 + c 2 2 + ... + c k 2 ) + ( k + 1 ) c k + 1 2 = ( k + 1 ) ( c 1 2 + c 2 2 + ... + c k 2 + c k + 1 2 )
True
c 1 2 + c 2 2 + . . . + c n 2 ≤ c 1 + c 2 + . . . + c n c 1 2 + c 2 2 + . . . + c n 2 ≤ ( c 1 + c 2 + . . . + c n ) 2 c 1 2 + c 2 2 + . . . + c n 2 ≤ c 1 2 + c 2 2 + . . . + c n 2 + + 2 c 1 c 2 + . . . + 2 c 1 c n + . . . + 2 c n − 1 c n c k > 0 , k = 1 , 2 , . . . , n 0 < 2 c 1 c 2 + . . . + 2 c 1 c n + . . . + 2 c n − 1 c n \sqrt{c_1^2+c_2^2+...+c_n^2}\leq c_1+c_2+...+c_n\\
c_1^2+c_2^2+...+c_n^2\leq (c_1+c_2+...+c_n)^2\\
c_1^2+c_2^2+...+c_n^2\leq c_1^2+c_2^2+...+c_n^2+\\
+2c_1c_2+...+2c_1c_n+...+2c_{n-1}c_n\\
c_k>0, k=1,2,...,n\\
0<2c_1c_2+...+2c_1c_n+...+2c_{n-1}c_n c 1 2 + c 2 2 + ... + c n 2 ≤ c 1 + c 2 + ... + c n c 1 2 + c 2 2 + ... + c n 2 ≤ ( c 1 + c 2 + ... + c n ) 2 c 1 2 + c 2 2 + ... + c n 2 ≤ c 1 2 + c 2 2 + ... + c n 2 + + 2 c 1 c 2 + ... + 2 c 1 c n + ... + 2 c n − 1 c n c k > 0 , k = 1 , 2 , ... , n 0 < 2 c 1 c 2 + ... + 2 c 1 c n + ... + 2 c n − 1 c n
True
Comments