let ck>0 for k=1,2,....,n.show that( c1+c2+....cn)/√n≤[ c1^2+c2^2+....+cn^2]^1/2≤c1+c2+...+cn
"\\frac{c_1+c_2+...+c_n}{\\sqrt{n}}\\leq\\sqrt{c_1^2+c_2^2+...+c_n^2}\\leq \\\\\n\\leq c_1+c_2+...+c_n\\\\\nc_k>0, k=1,2,...,n\\\\\n\\frac{c_1+c_2+...+c_n}{\\sqrt{n}}\\leq\\sqrt{c_1^2+c_2^2+...+c_n^2}\\\\\n(\\frac{c_1+c_2+...+c_n}{\\sqrt{n}})^2\\leq(\\sqrt{c_1^2+c_2^2+...+c_n^2})^2\\\\\n\\frac{(c_1+c_2+...+c_n)^2}{n}\\leq c_1^2+c_2^2+...+c_n^2\\\\\n(c_1+c_2+...+c_n)^2\\leq n(c_1^2+c_2^2+...+c_n^2)"
If "n=1, c_1^2\\leq c_1^2" true.
Lets "n=k, (c_1+c_2+...+c_k)^2\\leq k(c_1^2+c_2^2+...+c_k^2)\\\\" .
Proof if "n=k+1"
"(c_1+c_2+...+c_{k+1})^2\\leq\\\\\\leq (k+1)(c_1^2+c_2^2+...+c_{k+1}^2)\\\\\n(c_1+c_2+...+c_{k+1})^2=\\\\=((c_1+c_2+...+c_k)+c_{k+1})^2=\\\\\n=(c_1+c_2+...+c_k)^2+\\\\+2(c_1+c_2+...+c_k)c_{k+1}+c_{k+1}^2\n\\leq\\\\\\leq k(c_1^2+c_2^2+...+c_{k}^2)+\\\\\n+2(c_1+c_2+...+c_k)c_{k+1}+c_{k+1}^2=\\\\\n=k(c_1^2+c_2^2+...+c_{k}^2)+\\\\\n+2c_1c_{k+1}+2c_2c_{k+1}+...+2c_kc_{k+1}+c_{k+1}^2\\leq"
"(a-b)^2\\geq 0\\\\\na^2-2ab+b^2\\geq0\\\\\n2ab\\leq a^2+b^2"
"\\leq k(c_1^2+c_2^2+...+c_{k}^2)+\\\\\n+c_1^2+c^2_{k+1}+c_2^2+c^2_{k+1}+...+c^2_k+c^2_{k+1}+c_{k+1}^2=\\\\\n=(k+1)(c_1^2+c_2^2+...+c_{k}^2)+(k+1)c^2_{k+1}=\\\\\n(k+1)(c_1^2+c_2^2+...+c_{k}^2+c^2_{k+1})"
True
"\\sqrt{c_1^2+c_2^2+...+c_n^2}\\leq c_1+c_2+...+c_n\\\\\nc_1^2+c_2^2+...+c_n^2\\leq (c_1+c_2+...+c_n)^2\\\\\nc_1^2+c_2^2+...+c_n^2\\leq c_1^2+c_2^2+...+c_n^2+\\\\\n+2c_1c_2+...+2c_1c_n+...+2c_{n-1}c_n\\\\\nc_k>0, k=1,2,...,n\\\\\n0<2c_1c_2+...+2c_1c_n+...+2c_{n-1}c_n"
True
Comments
Leave a comment