Let fn(x) = cosnx/√ n , x belong to R, is not pointwise convergent. True or false with full explanation
False.
Note that "\\left| \\frac{\\cos nx}{\\sqrt{n}} \\right|\\leqslant \\frac{1}{\\sqrt{n}}\\rightarrow 0,n\\rightarrow \\infty"
Thus
"\\underset{n\\rightarrow \\infty}{\\lim}f_n\\left( x \\right) =\\underset{n\\rightarrow \\infty}{\\lim}\\frac{\\cos nx}{\\sqrt{n}}=0"
which means "f_n" is pointwise convergent.
Comments
Leave a comment