ANSWER Let x ∈ [ 0 , k ] x\in[0,k] x ∈ [ 0 , k ] , then lim x → ∞ n x + 2 n = lim x → ∞ 1 x n + 2 = 1 2 \lim_{x\rightarrow\infty}\frac{n}{x+2n}=\lim_{x\rightarrow\infty}\frac{1}{\frac{x}{n}+2 }=\frac{1}{2} lim x → ∞ x + 2 n n = lim x → ∞ n x + 2 1 = 2 1 .
So, the sequence converges pointwise ( f n → f f_{n}\rightarrow f f n → f ) on [ 0 , k ] [0,k] [ 0 , k ] ,where f ( x ) = 1 2 f(x)=\frac{1}{2} f ( x ) = 2 1 .
∣ f n ( x ) − f ( x ) ∣ = ∣ n x + 2 n − 1 2 ∣ = ∣ 2 n − x − 2 n x + 2 n ∣ = x x + 2 n \left | f_{n}(x)- f(x) \right |=\left |\frac{n}{x+2n}-\frac{1}{2} \right | =\left | \frac{2n-x-2n}{x+2n} \right | =\frac{ x}{x+2n} ∣ f n ( x ) − f ( x ) ∣ = ∣ ∣ x + 2 n n − 2 1 ∣ ∣ = ∣ ∣ x + 2 n 2 n − x − 2 n ∣ ∣ = x + 2 n x .
x x + 2 n ≤ k 2 n \frac{x}{x+2n}\leq\frac{k}{2n} x + 2 n x ≤ 2 n k for all x ∈ [ 0 , k ] x\in[0,k] x ∈ [ 0 , k ] because x + 2 n ≥ 2 n x+2n\geq2n x + 2 n ≥ 2 n . Therefore, 0 ≤ ∣ f n ( x ) − f ( x ) ∣ ≤ k 2 n 0\leq\left | f_{n}(x)- f(x) \right | \leq\frac{k}{2n} 0 ≤ ∣ f n ( x ) − f ( x ) ∣ ≤ 2 n k and
0 ≤ s u p x ∈ [ 0 , k ] ∣ f n ( x ) − f ( x ) ∣ ≤ k 2 n . 0\leq\underset{x\in[0,k] }{sup}\left | f_{n}(x)- f(x) \right | \leq\frac{k}{2n}. 0 ≤ x ∈ [ 0 , k ] s u p ∣ f n ( x ) − f ( x ) ∣ ≤ 2 n k .
lim n → ∞ k 2 n = 0 \lim_{n\rightarrow\infty}\frac{k}{2n }=0 lim n → ∞ 2 n k = 0 . Hence
lim n → ∞ s u p x ∈ [ 0 , k ] ∣ f n ( x ) − f ( x ) ∣ = 0 \lim_{ n\rightarrow\infty}\underset{x\in[0,k] }{sup}\left | f_{n}(x)- f(x) \right | =0 lim n → ∞ x ∈ [ 0 , k ] s u p ∣ f n ( x ) − f ( x ) ∣ = 0
Thus, by the definition, the sequence converges uniformly on [ 0 , k ] . [0,k]. [ 0 , k ] .
Comments