ANSWER Let x∈[0,k] , then limx→∞x+2nn=limx→∞nx+21=21 . 
So, the sequence converges  pointwise  ( fn→f ) on [0,k] ,where  f(x)=21 . 
∣fn(x)−f(x)∣=∣∣x+2nn−21∣∣=∣∣x+2n2n−x−2n∣∣=x+2nx .
 x+2nx≤2nk for all x∈[0,k]   because x+2n≥2n . Therefore, 0≤∣fn(x)−f(x)∣≤2nk  and
                                   0≤x∈[0,k]sup∣fn(x)−f(x)∣≤2nk. 
limn→∞2nk=0 . Hence         
                                       limn→∞x∈[0,k]sup∣fn(x)−f(x)∣=0 
Thus, by the definition, the sequence converges uniformly on [0,k]. 
Comments