Let fn(x)= n/(x+2n) is uniformly convergent in [0,k] , k>0
ANSWER Let "x\\in[0,k]" , then "\\lim_{x\\rightarrow\\infty}\\frac{n}{x+2n}=\\lim_{x\\rightarrow\\infty}\\frac{1}{\\frac{x}{n}+2 }=\\frac{1}{2}" .
So, the sequence converges pointwise ( "f_{n}\\rightarrow f" ) on "[0,k]" ,where "f(x)=\\frac{1}{2}" .
"\\left | f_{n}(x)- f(x) \\right |=\\left |\\frac{n}{x+2n}-\\frac{1}{2} \\right | =\\left | \\frac{2n-x-2n}{x+2n} \\right | =\\frac{ x}{x+2n}" .
"\\frac{x}{x+2n}\\leq\\frac{k}{2n}" for all "x\\in[0,k]" because "x+2n\\geq2n" . Therefore, "0\\leq\\left | f_{n}(x)- f(x) \\right | \\leq\\frac{k}{2n}" and
"0\\leq\\underset{x\\in[0,k] }{sup}\\left | f_{n}(x)- f(x) \\right | \\leq\\frac{k}{2n}."
"\\lim_{n\\rightarrow\\infty}\\frac{k}{2n }=0" . Hence
"\\lim_{ n\\rightarrow\\infty}\\underset{x\\in[0,k] }{sup}\\left | f_{n}(x)- f(x) \\right | =0"
Thus, by the definition, the sequence converges uniformly on "[0,k]."
Comments
Leave a comment