Let fn(x)= x^n is not uniformly continuous on [0,1] but is uniformly continuous on [0,k]
Solution
"{f_n}\\left( x \\right) = {x^n}" and "[0,1]"
For "x=1"
"{f_n}\\left( 1 \\right) = {1^n} = 1"
Therefore,
"\\mathop {\\lim }\\limits_{n \\to \\infty } {f_n}\\left( 1 \\right) = \\mathop {\\lim }\\limits_{n \\to \\infty } \\left( 1 \\right) = 1\\"
Now for "0 \\le x < 1"
"\\begin{array}{c}\n\\mathop {\\lim }\\limits_{n \\to \\infty } {f_n}\\left( x \\right) = \\mathop {\\lim }\\limits_{n \\to \\infty } {x^n}\\\\\n\\mathop {\\lim }\\limits_{n \\to \\infty } {f_n}\\left( x \\right) = 0 & & x < 1\n\\end{array}"
Therefore,
"\\mathop {\\lim }\\limits_{n \\to \\infty } {f_n}\\left( x \\right) = \\left\\{ \\begin{array}{l}\n0 & 0 \\le x < 1\\\\\n1 & x = 1\n\\end{array} \\right.\\"
This shows that the "{f_n}\\left( x \\right) = {x^n}" is piecewise convergent over the interval "[0,1]" .
Now for the interval "[0,k]"
We have
"\\begin{array}{c}\n\\mathop {\\lim }\\limits_{n \\to \\infty } {f_n}\\left( x \\right) = \\mathop {\\lim }\\limits_{n \\to \\infty } {x^n}\\\\\n\\mathop {\\lim }\\limits_{n \\to \\infty } {f_n}\\left( x \\right) = \\left\\{ \\begin{array}{l}\n0 & x < 1\\\\\n\\infty & x > 1\n\\end{array} \\right.\n\\end{array}\\"
Therefore, for any value of "k>1" , the "{f_n}\\left( x \\right) = {x^n}" is divergent.
Hence
"{f_n}\\left( x \\right) = {x^n}" is piecewise convergent over the interval "[0,1]" whereas not uniformlay continuously on the interval "[0, k]"
Comments
Leave a comment