For all even integral value of n, lim (x+1)^-n
n to ∞
Exist or not
True or false with full explanation
"\\mathop {\\lim }\\limits_{n \\to \\infty } {\\left( {x + 1} \\right)^{ - n}}"
"= \\mathop {\\lim }\\limits_{n \\to \\infty } \\exp \\left( {\\ln \\left( {{{\\left( {x + 1} \\right)}^{ - n}}} \\right)} \\right)"
"= \\mathop {\\lim }\\limits_{n \\to \\infty } \\exp \\left( { - n\\ln \\left( {x + 1} \\right)} \\right)"
"= \\exp \\left( { - \\ln \\left( {x + 1} \\right) \\cdot \\mathop {\\lim }\\limits_{n \\to \\infty } n} \\right)"
Now for "\\ln \\left( {x + 1} \\right) > 0"
"\\mathop {\\lim }\\limits_{n \\to \\infty } {\\left( {x + 1} \\right)^{ - n}}"
"= \\exp \\left( { - \\ln \\left( {x + 1} \\right) \\cdot \\infty } \\right)"
"= \\exp \\left( { - \\infty } \\right)"
"=0"
Hence "\\mathop {\\lim }\\limits_{n \\to \\infty } {\\left( {x + 1} \\right)^{ - n}}=0" for "\\ln \\left( {x + 1} \\right) > 0"
Comments
Leave a comment