Answer to Question #308445 in Real Analysis for Pankaj

Question #308445

Evaluate:


Lim↓ n→∞ [ n/1+n² + n/4+ n² +n/9+ n² +...... +n/2n²]

1
Expert's answer
2022-03-15T08:54:23-0400

ANSWER : π4\frac{\pi}{4}

EXPLANATION

We transform the sum n1+n2+n4+n2+n9+n2++n2n2\frac{n}{1+n^2}+\frac{n}{4+n^2}+\frac{n}{9+n^2}+ \cdots+\frac{n}{2n^2} as follows :1n(1(1n)2+1+1(2n)2+1++1(nn)2+1)\frac{1 }{n}\left ( \frac{1}{\left (\frac{1}{n} \right ) ^{2} +1 }+\frac{1}{\left (\frac{2}{n} \right ) ^{2} +1 }+\cdots+\frac{1}{\left (\frac{n}{n} \right ) ^{2} +1 } \right ) = k=1n1n1(kn)2+1.\sum _{k=1}^{n}\frac{1}{n}\cdot \frac{1}{\left (\frac{k}{n} \right ) ^{2} +1 }. The resulting sum is the Riemann integral sum for the function f(x)=11+x2f(x)=\frac{1}{1+x^2} on the segment [0,1] divided into nn equal parts by points xk=kn(k=0,n)x_{k}=\frac{k}{n}\left ( k=0,\cdots\,n \right ) . Since xkxk1=1nx_k-x_{k-1}=\frac{1}{n} for k=1,,nk=1,\cdots,\,n then k=1n1n1(kn)2+1=k=1n (xkxk1) f(xk)\sum _{k=1}^{n}\frac{1}{n}\cdot \frac{1}{\left (\frac{k}{n} \right ) ^{2} +1 } =\sum _{k=1}^{n}\ \left ( x_k-x_{k-1} \right ) \cdot \ f(x_k) .

The function ff is integrable, because ff is continuous. Therefore limnk=1n1n1(kn)2+1=limnk=1n (xkxk1) f(xk)=01f(x)dx\lim _{n\rightarrow\infty}\sum _{k=1}^{n}\frac{1}{n}\cdot \frac{1}{\left (\frac{k}{n} \right ) ^{2} +1 } =\lim_{n\rightarrow\infty}\sum _{k=1}^{n}\ \left ( x_k-x_{k-1} \right ) \cdot \ f(x_k)=\int_{0}^{1}f(x)dx .

0111+x2dx=[arctan1arctan0]=π4\int_ {0}^{1}\frac{1}{1+x ^{2}}dx=\left [ \arctan 1-\arctan 0 \right ] =\frac{ \pi }{4} . Hence limnk=1n1n1(kn)2+1=π4\lim _{n\rightarrow\infty}\sum _{k=1}^{n}\frac{1}{n}\cdot \frac{1}{\left (\frac{k}{n} \right ) ^{2} +1 } = \frac{\pi}{4} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment