Evaluate:
Lim↓ n→∞ [ n/1+n² + n/4+ n² +n/9+ n² +...... +n/2n²]
ANSWER : "\\frac{\\pi}{4}"
EXPLANATION
We transform the sum "\\frac{n}{1+n^2}+\\frac{n}{4+n^2}+\\frac{n}{9+n^2}+ \\cdots+\\frac{n}{2n^2}" as follows :"\\frac{1 }{n}\\left ( \\frac{1}{\\left (\\frac{1}{n} \\right ) ^{2} +1 }+\\frac{1}{\\left (\\frac{2}{n} \\right ) ^{2} +1 }+\\cdots+\\frac{1}{\\left (\\frac{n}{n} \\right ) ^{2} +1 } \\right )" = "\\sum _{k=1}^{n}\\frac{1}{n}\\cdot \\frac{1}{\\left (\\frac{k}{n} \\right ) ^{2} +1 }." The resulting sum is the Riemann integral sum for the function "f(x)=\\frac{1}{1+x^2}" on the segment [0,1] divided into "n" equal parts by points "x_{k}=\\frac{k}{n}\\left ( k=0,\\cdots\\,n \\right )" . Since "x_k-x_{k-1}=\\frac{1}{n}" for "k=1,\\cdots,\\,n" then "\\sum _{k=1}^{n}\\frac{1}{n}\\cdot \\frac{1}{\\left (\\frac{k}{n} \\right ) ^{2} +1 } =\\sum _{k=1}^{n}\\ \\left ( x_k-x_{k-1} \\right ) \\cdot \\ f(x_k)" .
The function "f" is integrable, because "f" is continuous. Therefore "\\lim _{n\\rightarrow\\infty}\\sum _{k=1}^{n}\\frac{1}{n}\\cdot \\frac{1}{\\left (\\frac{k}{n} \\right ) ^{2} +1 } =\\lim_{n\\rightarrow\\infty}\\sum _{k=1}^{n}\\ \\left ( x_k-x_{k-1} \\right ) \\cdot \\ f(x_k)=\\int_{0}^{1}f(x)dx" .
"\\int_ {0}^{1}\\frac{1}{1+x ^{2}}dx=\\left [ \\arctan 1-\\arctan 0 \\right ] =\\frac{ \\pi }{4}" . Hence "\\lim _{n\\rightarrow\\infty}\\sum _{k=1}^{n}\\frac{1}{n}\\cdot \\frac{1}{\\left (\\frac{k}{n} \\right ) ^{2} +1 } = \\frac{\\pi}{4}" .
Comments
Leave a comment