Show that (1/n²+ n+1)↓n∈N
is a Cauchy sequence.
Solution :-Â Â The given sequence isÂ
      an = 1/( n2 + n + 1 )   ; n belong to N .
 Â
then, we have to show that , the given sequence is a cauchy sequence .
Â
Result : - If  an  be a sequence of real numbers  , then  an   is convergent
if  an  is  cauchy sequence.
To shaw that the given sequence is a cauchy sequence .
Given ,     an = 1/( n2 + n + 1 )
now , since as  n tends to infinity
      an = 1/( n2 + n + 1 )  tends to 0.
this implies , the given sequence is a convergent sequence.
using the above result ,Â
since,  an = 1/( n2 + n + 1 )  is convergent .Â
implies,   an = 1/( n2 + n + 1 ) is a cauchy sequence .
Hence, the given sequence 1/( n2 + n + 1 )
is a cauchy sequence .
Comments
Leave a comment