Test whether the series ∞Σn=0 1/(n^5+x^3) converges uniformly or not
Alternative method
We consider "{a_n} = \\frac{1}{{{n^5} + {x^3}}}\\"and "{b_n} = \\frac{1}{{{n^5}}}\\" Â Â Â Â
Here we can see both the series "\\sum {a_n}\\"and "\\sum {b_n}" converge.Â
Now
"\\begin{array}{l}\n\\mathop {\\lim }\\limits_{n \\to \\infty } \\frac{{{a_n}}}{{{b_n}}}\\\\ = \\mathop {\\lim }\\limits_{n \\to \\infty } \\frac{{\\frac{1}{{{n^5} + {x^3}}}}}{{\\frac{1}{{{n^5}}}}}\\\\\n = \\mathop {\\lim }\\limits_{n \\to \\infty } \\frac{{{n^5}}}{{{n^5} + {x^3}}}\\\\ = \\mathop {\\lim }\\limits_{n \\to \\infty } \\frac{{{n^5}}}{{{n^5}\\left( {1 + \\frac{{{x^3}}}{{{n^5}}}} \\right)}}\\\\\n = \\mathop {\\lim }\\limits_{n \\to \\infty } \\frac{1}{{1 + \\frac{{{x^3}}}{{{n^5}}}}}\\\\ = \\frac{1}{{1 + \\frac{{{x^3}}}{{{\\infty ^5}}}}} = \\frac{1}{{1 + 0}} = 1\n\\end{array}\\"
Therefore, by limit comparison test the series "\\sum\\limits_{n = 0}^\\infty {{a_n}} = \\sum\\limits_{n = 0}^\\infty {\\frac{1}{{{n^5} + {x^3}}}} \\" converges.Â
Comments
Leave a comment