Test whether the series ∞Σn=0 1/(n^5+x^3) converges uniformly or not
The series converges for all x such that "n^5+x^3\\ne 0" for "n\\geq 1" .
Consider
"\\left| S_n\\left( x \\right) -S_{n-1}\\left( x \\right) \\right|=\\left| \\frac{1}{n^5+x^3} \\right|"
For "x=-\\left( n^5-1 \\right) ^{1\/3}"
"\\left| S_n\\left( x \\right) -S_{n-1}\\left( x \\right) \\right|=1"
The series doesn’t converge uniformly by the Cauchy criterion.
Comments
Leave a comment