Prove or disprove the following statement
‘ Every strictly increasing onto function is invertible'
"Solution:\n\\\\Let ~F:R \\rightarrow R~be ~any~strictly~increasing~into~function.\n\\\\We~show~that~F~is~bijective.\n\\\\To~this~end~,let~x,y\\in R~with~x \\neq y~then~so~we~assume~x<y,so~that~\n\\\\F(x)<F(y)~ implies~F(x)\\neq F(y).That~is~f ~is ~ injective~and~since~F ~is~onto~by~the~hypothesis,\n\\\\it~is~bijective~and~thus~invertible."
Comments
Leave a comment