Let f(x)= cos 1/x is not uniformly continuous on (0, infinity)
True. For "x_n=\\frac{1}{2\\pi n},y_n=\\frac{1}{\\frac{\\pi}{2}+2\\pi n}"
"f\\left( x_n \\right) -f\\left( y_n \\right) =\\cos \\left( 2\\pi n \\right) -\\cos \\left( \\frac{\\pi}{2}+2\\pi n \\right) =1-0=1"
Meanwhile "\\left| x_n-y_n \\right|=\\left| \\frac{1}{2\\pi n}-\\frac{1}{\\frac{\\pi}{2}+2\\pi n} \\right|=\\frac{1}{2\\pi n\\left( n+4 \\right)}\\rightarrow 0,n\\rightarrow \\infty"
This contradicts with the definition of uniform continuity.
Comments
Leave a comment