Prove the limit of π₯π =1/2 [π₯πβ1 + π₯π]
"xn=\\frac{1}{2}(X\ufeff\ufeffn-1 +xn)"
"\\lim xn=x1+lim \\sum_{k=1}^n(x_{k+1}-x_k)"
"=x_1+x_2-x_1+lim \\sum_{k=2}^n\\frac{(-1)^{k-1}c}{2^{k-1}}"
"=x_2+c lim(\\sum_{k=1}^{\\frac{n}{2}}\\frac{1}{4^k}-\\sum_{k=1}^{\\frac{n}{2}}\\frac{1}{2}\\frac{1}{2^{2k-1}})"
"=x_2+c(\\frac{1}{4}- (\\sum_{k=0}^{\\frac{n-1}{2}}\\frac{1}{2}\\frac{1}{4^k})"
Comments
Leave a comment