Determine the local minimum and local maximum values of the function f defined by
f(x) = 3-5x³ +5x⁴ -x^5
f′(x)=−15x2+20x3−5x4=−5x2(x−1)(x−3)f′(x)=0⇒x∈{0,1,3}f'\left( x \right) =-15x^2+20x^3-5x^4=-5x^2\left( x-1 \right) \left( x-3 \right) \\f'\left( x \right) =0\Rightarrow x\in \left\{ 0,1,3 \right\}f′(x)=−15x2+20x3−5x4=−5x2(x−1)(x−3)f′(x)=0⇒x∈{0,1,3}
Then we see that x=1 is local minimum, x=3 is local maximum
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment