Test the following series for convergence
Σ from n=1to ♾️ for [√n⁴+9 - √n⁴-9]
"\\underset{n\\rightarrow \\infty}{\\lim}\\frac{\\sqrt{n^4+9}-\\sqrt{n^4-9}}{1\/n^2}=\\underset{n\\rightarrow \\infty}{\\lim}\\frac{18n^2}{\\left( \\sqrt{n^4+9}+\\sqrt{n^4-9} \\right)}=\\\\=\\underset{n\\rightarrow \\infty}{\\lim}\\frac{18}{\\left( \\sqrt{1+\\frac{9}{n^4}}+\\sqrt{1-\\frac{9}{n^4}} \\right)}=\\frac{18}{2}=9\\\\\\sum_{n=1}^{\\infty}{\\frac{1}{n^2}}\\,\\,converges\\Rightarrow \\sum_{n=1}^{\\infty}{\\left( \\sqrt{n^4+9}-\\sqrt{n^4-9} \\right)}\\,\\,converges"
Comments
Leave a comment