Test the following series for convergence.
Σ from n=1 to ♾️ for n.x^n-1 , x>0
"R=\\frac{1}{\\underset{n\\rightarrow \\infty}{\\lim}\\sqrt[n]{n}}=\\frac{1}{1}=1;\\\\x=-1:\\sum_{n=1}^{\\infty}{n\\left( -1 \\right) ^n}diverges\\,\\,because\\,\\,\\underset{n\\rightarrow \\infty}{\\lim}n\\left( -1 \\right) ^n=\\infty; \\\\x=1:\\sum_{n=1}^{\\infty}{n\\cdot 1^n}diverges\\,\\,because\\,\\,\\underset{n\\rightarrow \\infty}{\\lim}n=\\infty; \\\\x\\in \\left( -1,1 \\right) -interval\\,\\,of\\,\\,convergence"
Comments
Leave a comment