ANSWER.
By the definition, a sequence { a n } \left \{a _{n} \right \} { a n } is called a Cauchy sequence if for any given ε > 0 \varepsilon>0 ε > 0 there exists n ε ∈ N n_{\varepsilon}\in N n ε ∈ N such that
n , m > n ε ⇒ ∣ a n − a m ∣ < ε n,m>n_{\varepsilon }\Rightarrow\left | a_{n} -a_{m}\right |<\varepsilon n , m > n ε ⇒ ∣ a n − a m ∣ < ε .
Note, that if m ≠ n m \neq n m = n , then m > n m>n m > n (or vice versa). Let m > n m>n m > n , then m = n + ( m − n ) m=n+(m-n) m = n + ( m − n ) Denoting p = m − n p=m-n p = m − n , we get the equivalent definition: { a n } \left \{a _{n} \right \} { a n } is called a Cauchy
sequence if for any given ε > 0 \varepsilon>0 ε > 0 there exists n ε ∈ N n_{\varepsilon}\in N n ε ∈ N such that
∣ a n − a n + p ∣ < ε \left | a_{n} -a_{n+p}\right |<\varepsilon ∣ a n − a n + p ∣ < ε for all n > n ε n >n_{\varepsilon } n > n ε and p ∈ N p\in N p ∈ N .
Since n + p > n \sqrt{n+p}>\sqrt{n} n + p > n for all n , p ∈ N n,p\in N n , p ∈ N ,then
∣ a n − a n + p ∣ = 1 n − 1 n + p < 1 n \left | a_{n}-a_{n+p} \right |=\frac{1}{\sqrt{n }}- \frac{1}{\sqrt{n+p}}<\frac{1}{\sqrt{n }} ∣ a n − a n + p ∣ = n 1 − n + p 1 < n 1 .
So, if ε > 0 \varepsilon>0 ε > 0 and n ε = n_{\varepsilon}= n ε = [ ( 1 ε ) 2 ] \left [ \left ( \frac{1}{\varepsilon} \right )^{2} \right ] [ ( ε 1 ) 2 ] (integer part of ( 1 ε ) 2 \left ( \frac{1}{\varepsilon} \right )^{2} ( ε 1 ) 2 ) , then
n > n ε > ( 1 ε ) 2 ⇒ n > n ε > ( 1 ε ) ⇒ 0 < 1 n < ε n>n_{\varepsilon}>\left ( \frac{1}{\varepsilon} \right )^{2} \Rightarrow \sqrt{n}>\sqrt{n_{\varepsilon}} >\left ( \frac{1}{\varepsilon} \right ) \Rightarrow0< \frac{1}{\sqrt{n}}<\varepsilon n > n ε > ( ε 1 ) 2 ⇒ n > n ε > ( ε 1 ) ⇒ 0 < n 1 < ε ,
Hense , 0 < 1 n − 1 n + p < ε 0<\frac{1}{\sqrt{n }}- \frac{1}{\sqrt{n+p}}<\varepsilon 0 < n 1 − n + p 1 < ε ( n > n ε , p ≥ 1 ) (n>n_{\varepsilon}, p\geq1) ( n > n ε , p ≥ 1 ) .
Therefore , the sequence a n = 1 n a_{n}=\frac{1}{\sqrt{n}} a n = n 1 is Cauchy sequence
Comments