Using the definition, show' that the sequence [1/√n]neN is Cauchy.
ANSWER.
By the definition, a sequence "\\left \\{a _{n} \\right \\}" is called a Cauchy sequence if for any given "\\varepsilon>0" there exists "n_{\\varepsilon}\\in N" such that
"n,m>n_{\\varepsilon }\\Rightarrow\\left | a_{n} -a_{m}\\right |<\\varepsilon" .
Note, that if "m \\neq n" , then "m>n" (or vice versa). Let "m>n" , then "m=n+(m-n)" Denoting "p=m-n", we get the equivalent definition: "\\left \\{a _{n} \\right \\}" is called a Cauchy
sequence if for any given "\\varepsilon>0" there exists "n_{\\varepsilon}\\in N" such that
"\\left | a_{n} -a_{n+p}\\right |<\\varepsilon" for all "n >n_{\\varepsilon }" and "p\\in N" .
Since "\\sqrt{n+p}>\\sqrt{n}" for all "n,p\\in N" ,then
"\\left | a_{n}-a_{n+p} \\right |=\\frac{1}{\\sqrt{n }}- \\frac{1}{\\sqrt{n+p}}<\\frac{1}{\\sqrt{n }}" .
So, if "\\varepsilon>0" and "n_{\\varepsilon}=""\\left [ \\left ( \\frac{1}{\\varepsilon} \\right )^{2} \\right ]" (integer part of "\\left ( \\frac{1}{\\varepsilon} \\right )^{2}" ) , then
"n>n_{\\varepsilon}>\\left ( \\frac{1}{\\varepsilon} \\right )^{2} \\Rightarrow \\sqrt{n}>\\sqrt{n_{\\varepsilon}} >\\left ( \\frac{1}{\\varepsilon} \\right ) \\Rightarrow0< \\frac{1}{\\sqrt{n}}<\\varepsilon" ,
Hense , "0<\\frac{1}{\\sqrt{n }}- \\frac{1}{\\sqrt{n+p}}<\\varepsilon" "(n>n_{\\varepsilon}, p\\geq1)" .
Therefore , the sequence "a_{n}=\\frac{1}{\\sqrt{n}}" is Cauchy sequence
Comments
Leave a comment