Use the substitution theorem evaluate,
Integral 0 to 2 t^2[1+t^3]^-1/2dt
I=∫02t21+t3dtI=\int_0^2 \frac{t^2}{\sqrt{1+t^3}}dtI=∫021+t3t2dt
Substitution:
u=t3+1u=t^3+1u=t3+1 ; du=3t2dtdu=3t^2dtdu=3t2dt;
u1=03+1=1u_1=0^3+1=1u1=03+1=1 ; u2=23+1=9u_2=2^3+1=9u2=23+1=9.
I=∫02t21+t3dt=13∫023t2dt1+t3=13∫19duu=I=\int_0^2 \frac{t^2}{\sqrt{1+t^3}}dt=\frac13\int_0^2 \frac{3t^2dt}{\sqrt{1+t^3}}=\frac13\int_1^9 \frac{du}{\sqrt{u}}=I=∫021+t3t2dt=31∫021+t33t2dt=31∫19udu=23u∣19=23(3−1)=43\frac23\sqrt u|_1^9=\frac23(3-1)=\frac4332u∣19=32(3−1)=34
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment