Use the substitution theorem evaluate,
Integral 0 to 2 t^2[1+t^3]^-1/2dt
"I=\\int_0^2 \\frac{t^2}{\\sqrt{1+t^3}}dt"
Substitution:
"u=t^3+1" ; "du=3t^2dt";
"u_1=0^3+1=1" ; "u_2=2^3+1=9".
"I=\\int_0^2 \\frac{t^2}{\\sqrt{1+t^3}}dt=\\frac13\\int_0^2 \\frac{3t^2dt}{\\sqrt{1+t^3}}=\\frac13\\int_1^9 \\frac{du}{\\sqrt{u}}=""\\frac23\\sqrt u|_1^9=\\frac23(3-1)=\\frac43"
Comments
Leave a comment