Answer to Question #319727 in Real Analysis for Jyo

Question #319727

Use the substitution theorem evaluate,


Integral 0 to 2 t^2[1+t^3]^-1/2dt

1
Expert's answer
2022-03-29T11:46:13-0400

I=02t21+t3dtI=\int_0^2 \frac{t^2}{\sqrt{1+t^3}}dt

Substitution:

u=t3+1u=t^3+1 ; du=3t2dtdu=3t^2dt;

u1=03+1=1u_1=0^3+1=1 ; u2=23+1=9u_2=2^3+1=9.

I=02t21+t3dt=13023t2dt1+t3=1319duu=I=\int_0^2 \frac{t^2}{\sqrt{1+t^3}}dt=\frac13\int_0^2 \frac{3t^2dt}{\sqrt{1+t^3}}=\frac13\int_1^9 \frac{du}{\sqrt{u}}=23u19=23(31)=43\frac23\sqrt u|_1^9=\frac23(3-1)=\frac43


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment