Separate the interval in which the function f defined on R by f(x)=2x3-15x2+36x+5 for all x∈R is increasing
f(x)f(x)f(x) is increasing on the interval in which f’(x)>0f’(x)>0f’(x)>0
f’(x)=6x2−30x+36>0f’(x)=6x^2-30x+36>0f’(x)=6x2−30x+36>0
x2−5x+6>0x^2-5x+6>0x2−5x+6>0
(x−2)(x−3)>0(x-2)(x-3)>0(x−2)(x−3)>0
x∈(−∞;2)∪(3;∞).x\in(-\infin;2)\cup(3;\infty).x∈(−∞;2)∪(3;∞).
Answer: f(x) is increasing on the interval x∈(−∞;2)∪(3;∞).x\in(-\infin;2)\cup(3;\infty).x∈(−∞;2)∪(3;∞).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment